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CHAPTER 1 INTRODUCTION

The dissertation is devoted to the study and applications of a new class of optimal control

problems governed by a perturbed sweeping process of the hysteresis type with control func-

tions acting in both play-and-stop operator and additive perturbations. Such control prob-

lems can be reduced to optimization of discontinuous and unbounded differential inclusions

with pointwise state constraints, which are immensely challenging in control theory and pre-

vent employing conventional variation techniques to derive necessary optimality conditions.

We develop the method of discrete approximations married with appropriate generalized dif-

ferential tools of modern variational analysis to overcome principal difficulties in passing to

the limit from optimality conditions for finite-difference systems. This approach leads us to

nondegenerate necessary conditions for local minimizers of the controlled sweeping process

expressed entirely via the problem data. Besides illustrative examples, we apply the obtained

results to an optimal control problem associated with of the crowd motion model of traffic

flow in a corridor, which is formulated in this thesis. The derived optimality conditions allow

us to develop an effective procedure to solve this problem in a general setting and completely

calculate optimal solutions in particular situations.

In this work, we deal with a version of the sweeping process introduced by Jean-Jacques

Moreau in the 1970s (see his comprehensive for that time lecture notes [40] with the references

to the original publications) in the following form of the dissipative differential inclusion:

−ẋ(t) ∈ N
(
x(t);C(t)

)
a.e. t ∈ [0, T ], x(0) := x0 ∈ C(0) ⊂ H, (1.1)

where C(t) is a continuously moving convex set, and where the normal cone operator to a
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convex subset C ⊂ H of a Hilbert space is given by

N(x;C) :=
{
v ∈ H

∣∣ 〈v, y − x〉 ≤ 0, y ∈ C
}

if x ∈ C and N(x;C) := ∅ if x /∈ C. (1.2)

The latter construction allows us to equivalently describe (1.1) as an evolution variational

inequality [7,24], or as a differential variational inequality in the terminology of [43,48]. The

original motivations for the introduction and study of the sweeping process come from ap-

plications to mechanical systems mostly related to friction and elastoplasticity, while further

developments apply also to various problems of hysteresis, ferromagnetism, electric circuits,

phase transitions, economics, etc.; see, e.g., [2,7,23,24,39,47,48] and the extensive bibliogra-

phies therein.

Our work in this thesis concerns a new class of optimal control problems for the perturbed

sweeping process (see [9, 10])

−ẋ(t) ∈ N
(
x(t);C(t)

)
+ f
(
x(t), a(t)

)
a.e. t ∈ [0, T ], x(0) := x0 ∈ C(0), (1.3)

with one part of controls a : [0, T ]→ Rd acting in the perturbation mapping f : Rn×Rd → Rn

and the other part of controls u : [0, T ]→ Rn acting in the moving set

C(t) := C + u(t) with C :=
{
x ∈ Rn

∣∣ 〈x∗i , x〉 ≤ 0 for all i = 1, . . . ,m
}
, (1.4)

where x∗i are fixed vectors from Rn, and where the final time T > 0 is also fixed. The

minimizing cost functional is given in the generalized Bolza form

minimize J [x, u, a] := ϕ
(
x(T )

)
+

∫ T

0

`
(
t, x(t), u(t), a(t), ẋ(t), u̇(t), ȧ(t)

)
dt (1.5)

with the proper terminal extended-real-valued cost function ϕ : Rn → R := (−∞,∞] and

the running cost function ` : [0, T ] × R4n+2d → R. Fixed r > 0, we impose the additional
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constraint on the u-controls:

‖u(t)‖ = r for all t ∈ [0, T ] (1.6)

required by applications. The primary application we have in mind is the crowd motion

model (see, e.g., [30]), which corresponds to (1.3) with controls only in perturbations and

whose simplified optimal control version is solved in our paper [10] based on the obtained

optimality conditions.

Besides the dynamic constraints (1.3), problem (P τ ) involves the pointwise constraints

on u-controls: 
‖u(t)‖ = r for all t ∈ [τ, T − τ ],

r − τ ≤ ‖u(t)‖ ≤ r + τ for all t ∈ [0, τ) ∪ (T − τ, T ]

(1.7)

depending on the parameter τ ∈ [0, τ ] with τ := min{r, T} and fixed r > 0. Note that

the inclusion in (1.3) and the second part of definition (1.2) implicitly yield the pointwise

constraints of another type

〈
x∗i , x(t)− u(t)

〉
≤ 0 for all t ∈ [0, T ] and i = 1, . . . ,m. (1.8)

The characteristic feature of problem (P τ ) for any fixed τ ∈ [0, τ ] is the differential

inclusion (1.3) describing, for each fixed control pair (u(·), a(·)), a perturbed version of

Moreau’s sweeping process [40] the mathematical theory of which has been well developed;

see, e.g., [11,20,25] and the references therein. The sweeping inclusion (1.3) significantly dif-

fers from those considered in optimal control theory for differential inclusions as developed

in [4, 18, 37, 52] and other publications, since (1.3) admits a unique solution x(·) whenever

the sweeping set C(·) and the perturbation function a(·) therein are given a priori; and so
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there is no room for optimization in such a case. Our control model in (P τ ) follows the

line of [12, 13], where control actions enter the sweeping set but not entering perturbations.

Other optimal control problems for various versions of the sweeping process are considered

in [1,8,20] with no controls in the sweeping set. Namely, [20] deals with controls only in per-

turbations addressing existence and relaxation issues for optimal solutions, while [1,8] apply

controls in associated differential equations with deriving necessary optimality conditions for

discrete-time [1] and continuous-time [8] systems.

The main goal of our work [9] is to study the formulated optimal control problems (P )

and (P τ ) in what follows by using the method of discrete approximations in the vein of [35,37]

and its significant modification for the case of unperturbed non-Lipschitzian differential in-

clusions developed in [13]. The presence of controlled perturbations in (1.3) together with

the mixed constraints 〈x∗i , x(t) − u(t)〉 ≤ 0 essentially complicates the discrete approxima-

tion procedure. We constructed well-posed discrete approximations in such a way that every

feasible (resp. locally optimal) solution to (P τ ) with τ ≥ 0 and (P 0) = (P ), can be strongly

approximated in W 1,2[0, T ] by feasible (resp. optimal) solutions to finite-difference control

systems. Employing then appropriate first-order and second-order generalized differential

constructions of variational analysis and explicitly calculating them via the problem data

allow us to successfully obtain effective necessary optimality conditions for discrete opti-

mal solutions, which can be treated as suboptimality (almost optimality) conditions for the

original sweeping control problem.

The paper [10] can be considered a continuation of our work in [9]. The major goal

of this paper is to derive nondegenerate necessary optimality conditions for the so-called
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intermediate (including strong) local minimizers of the sweeping control problems under

consideration by passing to the limit from the necessary optimality conditions for their

discrete approximations obtained in [9].

In contrast to all the previous developments, we address in this thesis necessary optimality

conditions for problem (P τ ) with controls in both sweeping set and additive perturbations.

Note that the structure of the sweeping set in (1.3), (1.4) is specific for the so-called play-

and-stop operator [47] and largely relates to rate independent hysteresis; see, e.g., [24,32,47].

Our main application here is given to a corridor version of the crowd motion model [30, 51],

where introducing controls in perturbations allows us to optimize the corresponding sweeping

process and determine the optimal strategy of crowd motion participants.

Considering the triple z = (x, u, a) ∈ Rn × Rn × Rd, it is easy to observe that (1.3) can

be written as

− ż(t) ∈ F
(
z(t)

)
× Rn × Rd a.e. t ∈ [0, T ] with F (z) := N(x− u;C) + f(x, a), (1.9)

where the initial triple z(0) = (x0, u(0), a(0)) satisfies the condition x0 − u(0) ∈ C via the

convex polyhedron C defined in (1.4). Then the sweeping optimal control problem (P τ )

amounts to minimizing the cost functional J [z] = J [x, u, a] in (1.5) over W 1,2-solutions to

the differential inclusion (1.5) subject to the pointwise state constraints of the equality and

inequality types in (1.7) and (1.8), where the latter ones are implicit from (1.5). Although

problem (P τ ) is now written in the usual form of the theory of differential inclusions, it is

far removed from satisfying the assumptions under which necessary optimality conditions

have been developed in this theory. First of all, the right-hand side of (1.5) is intrinsically

unbounded, discontinuous, and highly non-Lipschitzian in any generalized sense treated by
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the developed approaches of optimal control theory for differential inclusions. Furthermore,

besides the inequality state constraints in (1.8), problem (P τ ) contains the unconventional

equality ones as in (1.7). Such constraints have just recently started to be considered in control

theory for smooth ordinary differential equations [5], where necessary optimality conditions

are obtained under strong regularity assumptions including full rank of the smooth constraint

Jacobians, which is not the case in (1.7).

In this thesis, we develop the method of discrete approximations to derive necessary

optimality conditions for control problems governed by differential inclusions following the

scheme of [35, 36], where the discrete approximation approach is realized for Lipschitzian

differential inclusions without state constraints, and then its recent significant modification

given in [13] in the case of the sweeping process with general polyhedral controlled sets but

without control actions in additive perturbations. Note that our developments in this work

result in new optimality conditions that have important advantages in comparison with those

in [13] even in the case of no controls in perturbations.
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CHAPTER 2 OPTIMAL CONTROL OF A PER-

TURBED SWEEPING PROCESS VIA

DISCRETE APPROXIMATIONS

In this chapter, we develop the method of discrete approximations, which allows us to

adequately replace the original optimal control problem (P τ ) by a sequence of well-posed

finite-dimensional optimization problems whose optimal solutions strongly converge to that

of the controlled perturbed sweeping process. To solve the discretized control systems, we

derive effective necessary optimality conditions by using second-order generalized differential

tools of variational analysis that explicitly calculated in terms of the given problem data.

2.1 Standing Assumptions and Preliminaries

Throughout the work we impose the following standing assumptions on the initial data

of the optimal control problem (P ) in (1.3)–(1.7):

(H1) The mapping f : Rn × Rd → Rn is continuous on Rn × Rd and locally Lipschitz

continuous in the first argument, i.e., for every ε > 0 there is a constant K > 0 such that

‖f(x, a)− f(y, a)‖ ≤ K‖x− y‖ whenever (x, y) ∈ B(0, ε)×B(0, ε), a ∈ Rd. (2.1)

Furthermore, there is a constant M > 0 ensuring the growth condition

‖f(x, a‖ ≤M
(
1 + ‖x‖

)
for any x ∈

⋃
t∈[0,T ]

C(t), a ∈ Rd. (2.2)

(H2) The terminal cost function ϕ : Rn → R and the running cost function ` : [0, T ] ×

R4n+2d → R in (1.5) are lower semicontinuous (l.s.c.) while ` is bounded from below on

bounded sets.

Now we are ready to formulate the powerful well-posedness result for the sweeping process

under consideration that reduces to [20, Theorem 1].
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Proposition 2.1 (well-posedness of the controlled sweeping process). Under the

assumptions in (H1), let u(·) ∈ W 1,2([0, T ];Rn) and a(·) ∈ W 1,2([0, T ];Rd), and let M > 0 be

taken from (2.2). Then the perturbed sweeping inclusion (1.6) with C(t) from (1.7) admits the

unique solution x(·) ∈ W 1,2([0, T ];Rn) generated by (u(·), a(·)) and satisfying the estimates

‖x(t)‖ ≤ l := ‖x0‖+ e2MT
(

2MT (1 + ‖x0‖) +

∫ T

0

‖u̇(s)‖ds
)

for all t ∈ [0, T ], (2.3)

‖ẋ(t)‖ ≤ 2(1 + l)M + ‖u̇(t)‖ a.e. t ∈ [0, T ].

Proof. To deduce this result from [20, Theorem 1], with taking into account the solution

estimates therein, it remains to verify that C(t) in (1.7) generated by the chosen W 1,2-

control u(·) varies in an absolutely continuous way [20], i.e., there is an absolutely continuous

function v : [0, T ]→ R such that

∣∣dist(y;C(t)
)
− dist

(
y;C(s)

)∣∣ ≤ |v(t)− v(s)| for all t, s ∈ [0, T ] (2.4)

with dist(x; Ω) standing for the distance from x ∈ Rn to the closed set Ω ⊂ Rn and with the

function

v(t) :=

∫ t

0

‖u̇(s)‖ds, 0 ≤ t ≤ T,

in our case. To verify (2.4), pick any y ∈ Rn and c ∈ C and then easily get the estimates

dist
(
y;C(t)

)
= dist

(
y;u(t) + C

)
≤ ‖y − u(t)− c‖ ≤ ‖y − u(s)− c‖+ ‖u(t)− u(s)‖ ,

which imply in turn by the definition of the distance function that

dist
(
y;C(t)

)
≤ inf

c∈C
‖y − u(s)− c‖+ ‖u(t)− u(s)‖ = dist

(
y;C(s)

)
+ ‖u(t)− u(s)‖ .
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Using this and then changing the positions of t and s give us the resulting inequality

∣∣dist(y;C(t)
)
− dist

(
y;C(s)

)∣∣ ≤ ‖u(t)− u(s)‖ for all t, s ∈ [0, T ].

This finally yields (2.4) by observing that

∣∣d(y;C(t)
)
− d
(
y;C(s)

)∣∣ ≤ ‖u(t)− u(s)‖ =

∥∥∥∥∫ t

s

u̇(θ)dθ

∥∥∥∥
≤
∫ t

s

‖u̇(θ)‖dθ =

∫ t

s

v̇(θ)dθ = |v(t)− v(s)|

and thus completes the proof of the proposition. �

2.2 Discrete Approximations of Feasible Solutions

In this section we construct a sequence of discrete approximations of the sweeping differ-

ential inclusion in (1.6), (1.7) with the constraints in (1.9) and (1.8), but without appealing to

the minimizing functional (1.5). The main result of this section is justifying the strong W 1,2-

approximation of any feasible control and the corresponding sweeping trajectory by their

finite-difference counterparts, which are piecewise linearly extended to the continuous-time

interval [0, T ].

First we reduce (1.6) to a more conventional form of differential inclusions. Introduce

the new variable z := (x, u, a) ∈ Rn × Rn × Rd and define the set-valued mapping F :

Rn × Rn × Rd ⇒ Rn by

F (z) = F (x, u, a) := N(x− u;C) + f(x, a). (2.5)

Consider the collection of active constraint indices of polyhedron (1.7) at x̄ ∈ C given by

I(x̄) :=
{
i ∈ {1, . . . ,m}

∣∣ 〈x∗i , x̄〉 = 0
}
, (2.6)



www.manaraa.com

10

it is not difficult to observe (see, e.g., [22, Proposition 3.1]) the explicit representation

F (z) =
{ ∑
i∈I(x−u)

λix
∗
i

∣∣∣ λi ≥ 0
}

+ f(x, a) (2.7)

of (2.5) via the active index set (2.6) at x−u ∈ C. Then we can rewrite (1.6) in the following

equivalent form with respect to the variable z = (x, u, a):

− ż(t) ∈ F
(
z(t)

)
× Rn × Rd a.e. t ∈ [0, T ] (2.8)

with the initial condition z(0) = (x0, u(0), a(0)) satisfying x0 − u(0) ∈ C, i.e., such that

〈x∗i , x0 − u(0)〉 ≤ 0 for all i = 1, . . . ,m. Proposition 2.1 allows us to have solutions of the

differential inclusion (2.8) in the class of W 1,2-functions z(t) = (x(t), u(t), a(t)) on [0, T ].

Note that, although the resulting system (2.8) is written in the conventional form of

the theory of differential inclusions, it does not satisfy usual assumptions therein. Indeed,

the right-hand side of (2.8) is intrinsically unbounded in all its components, including the

first (perturbed normal cone) one in which is highly non-Lipschitzian. Furthermore, the

constrained system under consideration contains the intrinsic inequality state constraints

(1.8) together with the equality one (1.9) on the whole time interval [0, T ].

Having in mind further applications including those developed in [10], it makes sense

to consider a parametric version of the equality constraint in (1.9) with a small parameter

τ ≥ 0 while replacing (1.9) by
‖u(t)‖ = r for all t ∈ [τ, T − τ ],

r − τ ≤ ‖u(t)‖ ≤ r + τ for all t ∈ [0, τ) ∪ (T − τ, T ],

(2.9)

which reduces to (1.9) when τ = 0. Fix any τ ∈ [0,min{r, T}], k ∈ IN and denote by

jτ (k) := [kτ/T ] the smallest index j such that tkj ≥ τ and by jτ (k) := [k(T − τ)/T ]− 1 the
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largest j with tkj ≤ T − τ .

The next theorem on the strong discrete approximation of feasible sweeping solutions is a

counterpart of [13, Theorem 3.1] for the perturbed sweeping process in (1.6), (1.7) constrained

by (1.8), (2.9) with additional quantitative estimates expressed via the system data. The

reader can see that both the formulation and proof in the new setting are significantly more

involved in comparison with [13]. Observe also the novel approximation conclusion (2.13),

which holds also in the setting of [13] while being missed therein. This conclusion will allow

us to construct a more precise discrete approximation of a local minimizer in Theorem 2.5,

which is crucial to derive a new transversality condition for the original continuous-time

sweeping control problem (P τ ) in [10].

Theorem 2.2 (W 1,2-strong discrete approximation of feasible sweeping solutions).

Under the validity of (H1), let the triple z̄(·) = (x̄(·), ū(·), ā(·)) be a given feasible solution

to the constrained sweeping system from (1.6), (1.7), and (2.9) with a fixed parameter τ ∈

[0,min{r, T}], and let the constant K be taken from (2.1). Define the discrete partitions of

[0, T ] by

∆k :=
{

0 = tk0 < tk1 < . . . < tkk
}

with hk := tkj+1 − tkj ↓ 0 as k →∞ (2.10)

and suppose that z̄(·) has the following properties at the mesh points (while observing that

all these properties hold if z̄(·) ∈ W 2,∞[0, T ]): it satisfies (2.8) at tkj as j = 0, . . . , k − 1 for

all k ∈ IN (with the right-side derivative at t0 = 0), we have

k−1∑
j=0

(tkj+1 − tkj )

∥∥∥∥∥ x̄(tkj+1)− x̄(tkj )

tkj+1 − tkj
− ˙̄x(tkj )

∥∥∥∥∥
2

→ 0 as k →∞, (2.11)
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and there is a constant µ > 0 independent of k such that

k−1∑
j=0

∥∥∥∥∥ x̄(tkj+1)− x̄(tkj )

hk
− ˙̄x(tkj )

∥∥∥∥∥ ≤ µ,

∥∥∥∥ ū(tk1)− ū(tk0)

hk

∥∥∥∥ ≤ µ,

k−2∑
j=0

∥∥∥∥∥ ū(tkj+2)− ū(tkj+1)

hk
−
ū(tkj+1)− ū(tkj )

hk

∥∥∥∥∥ ≤ µ.

(2.12)

Then there exist a sequence of piecewise linear functions zk(t) := (xk(t), uk(t), ak(t)) on

[0, T ] and a sequence of εk ≤ 2hkµe
K ↓ 0 as k → ∞ for which (xk(0), uk(0), ak(0)) =

(x0, ū(0), ā(0)),

xk(tk1)− xk(tk0)

hk
→ ˙̄x(0) as k →∞, (2.13)


‖uk(tkj )‖ = r if j = jτ (k), . . . , jτ (k),

r − τ − εk ≤ ‖uk(tkj )‖ ≤ r + τ + εk if j = 0, . . . , jτ (k)− 1 and j ≥ jτ (k) + 1,

(2.14)

xk(t) = xk(tj)−(t−tj)vkj , xk(0) = x0, t
k
j ≤ t ≤ tkj+1 with vkj ∈ F

(
zk(tkj )

)
, j = 0, . . . , k−1,

(2.15)

and the functions zk(·) converge to z̄(·) in the norm topology of W 1,2[0, T ], i.e.,

zk(t)→ z̄(t) uniformly on [0, T ] and

∫ T

0

‖żk(t)− ˙̄z(t)‖2dt→ 0 as k →∞. (2.16)

Furthermore, for every k ∈ IN we have the estimates

var
(
u̇k; [0, T ]

)
≤ µ̃ and

∥∥∥∥uk(tk1)− uk(tk0)

hk

∥∥∥∥ ≤ µ̃ with µ̃ := max
{

3µ(1+4KT )eK , 4µ(eK+1)
}
,

(2.17)

where the symbol “var ” stands for the total variation of the function in question.

Proof. Let yk(·) := (yk1(·), yk2(·), yk3(·)) be piecewise linear on [0, T ] and such that

(
yk1(tkj ), y

k
2(tkj ), y

k
3(tkj )

)
:=
(
x̄(tkj ), ū(tkj ), ā(tkj )

)
, j = 0, . . . , k. (2.18)
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Define next wk(t) = (wk1(t), wk2(t), wk3(t)) := ẏk(t) as piecewise constant and right continu-

ous function on [0, T ] via the derivatives at non-mesh points and deduce from (2.12) that

var (wk2 ; [0, T ]) ≤ µ for every k ∈ IN . It follows from the definition of wk(·) that

wk1(0) =
x̄(tk1)− x̄(tk0)

hk
→ ˙̄x(0) as k →∞ (2.19)

due to the existence of the right derivative of ˙̄x(0) by the imposed assumption on the validity

of (2.8) at the mesh points. Furthermore, we get from (1.8) that

〈x∗i , yk1(tkj )− yk2(tkj )〉 = 〈x∗i , x̄(tkj )− ū(tkj )〉 ≤ 0

on the mesh ∆k for all j = 1, . . . , k − 1 and i = 1, . . . ,m. The constructions made ensure

that

yk(·)→ z̄(·) uniformly on [0, T ] and wk(·)→ ˙̄z(·) in norm of L2([0, T ];R2n+d).

Denote ak(t) := yk3(t) for all t ∈ [0, T ], fix k ∈ IN , and use for simplicity the notation tj := tkj

as j = 1, . . . , k. To construct the claimed trajectories xk(t) of (2.15), we proceed by induction

and suppose that the value of xk(tj) is known. Define now the vectors

uk(tj) := xk(tj)− yk1(tj) + yk2(tj) = xk(tj)− x̄(tj) + ū(tj), j = 0, . . . , k,

and assume without loss of generality that
∥∥uk(tj)∥∥ = r for j = jτ (k), . . . , jτ (k), which

clearly yields

xk(tj)− uk(tj) = x̄(tj)− ū(tj) for j = 0, . . . , k. (2.20)

Since the sets F (z) in (2.5) are closed and convex, we select the unique projection

vkj := Π(−wk1j;F
(
xk(tj), u

k(tj), a
k(tj))

)
, j = 0, . . . , k, (2.21)
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and deduce from (2.19) that vk0 → ˙̄x(0) as k →∞. Defining next xk(t) := xk(tj)− (t− tj)vkj

for all t ∈ [tj, tj+1] and j = 0, . . . , k shows that the inclusions in (2.15) are fulfilled and

condition (2.13) holds. Furthermore, we deduce from (2.7) and (2.20) that

F
(
xk(tj), u

k(tj), a
k(tj)

)
= F

(
x̄(tj), ū(tj), ā(tj)

)
+ f
(
xk(tj), ā(tj)

)
− f

(
x̄(tj), ā(tj)

)
(2.22)

at the mesh points. To verify that the triples (xk(t), uk(t), ak(t)), k ∈ IN , constructed above

satisfy all the conclusions of the theorem, let us first show that

εk :=
∥∥xk(tj)− x̄(tj)

∥∥ ≤ max
{
hkµ(1 + hkK), 2hkµe

K
}

= 2hkµe
K (2.23)

for all j = 0, . . . , k. Indeed, picking any t ∈ [tj, tj+1] for j = 0, . . . , k − 1, we have the

representation

xk(t)− yk1(t) = xk(tj)− x̄(tj) + (t− tj)(−vkj − wk1j),

which implies in turn the estimate∥∥xk(t)− yk1(t)
∥∥ ≤∥∥xk(tj)− x̄(tj)

∥∥+ (tj+1 − tj)
∥∥−vkj − wk1j∥∥

=
∥∥xk(tj)− x̄(tj)

∥∥+ (tj+1 − tj)dist
(
− x̄(tj+1)− x̄(tj)

tj+1 − tj
;F
(
zk(tj)

))
.

It then follows from (2.22) that∥∥xk(t)− yk1(t)
∥∥ ≤ ∥∥xk(tj)− x̄(tj)

∥∥+ hk
∥∥f(xk(tj), ā(tj)

)
− f

(
x̄(tj), ā(tj)

)∥∥
+ hk

∥∥∥∥ x̄(tj+1)− x̄(tj)

tj+1 − tj
− ˙̄x(tj)

∥∥∥∥ .
Using the Lipschitz continuity of f with respect to x imposed in (2.1) gives us

∥∥xk(t)− yk1(t)
∥∥ ≤ (1 + hkK)

∥∥xk(tj)− x̄(tj)
∥∥+ hk

∥∥∥∥ x̄(tj+1)− x̄(tj)

tj+1 − tj
− ˙̄x(tj)

∥∥∥∥ , (2.24)

and thus, by taking the first condition in (2.12) into account, we arrive at the inequalities
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

∥∥∥∥xk(t1)− x̄(t1)

∥∥∥∥ ≤ hk

∥∥∥∥ x̄(t1)− x̄(t0)

t1 − t0
− ˙̄x(t0)

∥∥∥∥,∥∥∥∥xk(t2)− x̄(t2)

∥∥∥∥ ≤ (1 + hkK)

∥∥∥∥xk(t1)− x̄(t1)

∥∥∥∥+ hk

∥∥∥∥ x̄(t2)− x̄(t1)

t2 − t1
− ˙̄x(t1)

∥∥∥∥
≤ hk

(∥∥∥∥ x̄(t1)− x(t0)

t1 − t0
− ẋ(t0)

∥∥∥∥+

∥∥∥∥ x̄(t2)− x̄(t1)

t2 − t1
− ˙̄x(t1)

∥∥∥∥)+ h2
kKµ.

(2.25)

Now we proceed by induction to verify that∥∥∥∥xk(tj)− x̄(tj)

∥∥∥∥ ≤ hk

j−1∑
i=0

∥∥∥∥ x̄(ti+1)− x̄(ti)

ti+1 − ti
− ˙̄x(ti)

∥∥∥∥
+ h2

kKµ

j−3∑
i=0

(1 + hkK)i + (1 + hkK)j−1hkµ

(2.26)

for j = 3, . . . , k. Starting with j = 3, observe from (2.12), (2.24), and (2.25) that∥∥xk(t3)− x̄(t3)
∥∥ ≤ (1 + hkK)

∥∥xk(t2)− x̄(t2)
∥∥+ hk

∥∥∥∥ x̄(t3)− x̄(t2)

t3 − t2
− ˙̄x(t2)

∥∥∥∥
≤ (1 + hkK)

(
hk

1∑
i=0

∥∥∥∥ x̄(ti+1)− x̄(ti)

ti+1 − ti
− ˙̄x(ti)

∥∥∥∥+ h2
kKµ

)

+ hk

∥∥∥∥ x̄(t3)− x̄(t2)

t3 − t2
− ˙̄x(t2)

∥∥∥∥
= hk

2∑
i=0

∥∥∥∥ x̄(ti+1)− x̄(ti)

ti+1 − ti
− ˙̄x(ti)

∥∥∥∥+ h2
kK

1∑
i=0

∥∥∥∥ x̄(ti+1)− x̄(ti)

ti+1 − ti
− ˙̄x(ti)

∥∥∥∥
+ (1 + hkK)h2

kKµ

≤ hk

2∑
i=0

∥∥∥∥ x̄(ti+1)− x̄(ti)

ti+1 − ti
− ˙̄x(ti)

∥∥∥∥+ h2
kKµ+ (1 + hkK)2hkµ,

which justifies the validity of (2.26) at j = 3. Suppose next that (2.26) holds for tj as j ≥ 3
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and show that it is also satisfied for tj+1. Indeed, employing (2.12) and (2.24) tells us that

∥∥xk(tj+1)− x̄(tj+1)
∥∥ =

∥∥xk(tj+1)− yk1(tj+1)
∥∥

≤(1 + hkK)
∥∥xk(tj)− x̄(tj)

∥∥+ hk

∥∥∥∥ x̄(tj+1)− x̄(tj)

tj+1 − tj
− ˙̄x(tj)

∥∥∥∥
≤(1 + hkK)

(
hk

j−1∑
i=0

∥∥∥∥ x̄(ti+1)− x̄(ti)

ti+1 − ti
− ˙̄x(ti)

∥∥∥∥+ h2
kKµ

j−3∑
i=0

(1 + hkK)i
)

+(1 + hkK)jhkµ+ hk

∥∥∥∥ x̄(tj+1)− x̄(tj)

tj+1 − tj
− ˙̄x(tj)

∥∥∥∥
≤hk

j∑
i=0

∥∥∥∥ x̄(ti+1)− x̄(ti)

ti+1 − ti
− ˙̄x(ti)

∥∥∥∥+ h2
kKµ

j−2∑
i=0

(1 + hkK)i + (1 + hkK)jhkµ,

which shows that estimate (2.26) holds for tj+1, and thus it is justified for all j = 3, . . . , k.

Now picking any j ∈ {3, . . . , k} and using the first inequality in (2.12), we get∥∥∥∥xk(tj)− x̄(tj)

∥∥∥∥ ≤hkµ+ hkµ[(1 + hkK)j−2 − 1] + (1 + hkK)khkµ

≤2hkµ(1 + hkK)k

=2hkµ

(
1 +

K

k

)k
≤2hkµe

K .

Combining it with (2.25), we arrive at (2.23). This readily implies that

r − τ − εk ≤ ‖uk(tj)‖ ≤ r + τ + εk

for j ≤ jτ (k) − 1 and j ≥ jτ (k) + 1, i.e., the relationships in (2.14) are satisfied with εk

defined in (2.23). Furthermore, it follows from (2.23) and (2.24) that∥∥∥∥xk(t)− yk1(t)

∥∥∥∥ ≤(1 + hkK)2hkµe
K + hk

∥∥∥∥ x̄(tj+1)− x̄(tj)

tj+1 − tj
− ˙̄x(ti)

∥∥∥∥
≤2hkµe

K(1 + hkK) + hkµ

(2.27)

for t ∈ [tj, tj+1] and j = 0, . . . , k − 1. Next we consider relationships for the u-component of
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zk(·). The first and third conditions in (2.12) yield

k−2∑
j=0

∥∥∥∥uk(tj+2)− uk(tj+1)

tj+2 − tj+1

− uk(tj+1)− uk(tj)
tj+1 − tj

∥∥∥∥
≤

k−2∑
j=0

∥∥∥∥ ū(tj+2)− ū(tj+1)

tj+2 − tj+1

− ū(tj+1)− ū(tj)

tj+1 − tj

∥∥∥∥
+2

k−1∑
j=0

∥∥∥∥xk(tj+1)− xk(tj)
tj+1 − tj

− x̄(tj+1)− x̄(tj)

tj+1 − tj

∥∥∥∥
≤µ+ 2

k−1∑
j=0

∥∥∥∥− vkj − x̄(tj+1)− x̄(tj)

tj+1 − tj

∥∥∥∥
=µ+ 2

k−1∑
j=0

∥∥∥∥− vkj − wk1j∥∥∥∥
=µ+ 2

k−1∑
j=0

dist

(
− x̄(tj+1)− x̄(tj)

tj+1 − tj
;F
(
zk(tj)

))

≤µ+ 2
k−1∑
j=0

∥∥∥∥ x̄(tj+1)− x̄(tj)

tj+1 − tj
− ˙̄x(tj)

∥∥∥∥+ 2
k−1∑
j=0

K

∥∥∥∥xk(tj)− x̄(tj)

∥∥∥∥
≤3µ+ 2Kk2hkµe

K

=3µ+ 4KTµeK

≤µ̃ = max
{

3µ+ 4KTµeK , 4µeK + µ
}
,

which justifies the first estimate in (2.17). To verify the second estimate therein, we deduce

from (2.20), (2.23), and the second inequality in (2.12) that∥∥∥∥uk(t1)− uk(t0)

t1 − t0

∥∥∥∥ ≤∥∥∥∥uk(t1)− ū(t1)

t1 − t0

∥∥∥∥+

∥∥∥∥uk(t0)− ū(t0)

t1 − t0

∥∥∥∥+

∥∥∥∥ ū(t1)− ū(t0)

t1 − t0

∥∥∥∥
≤
∥∥∥∥xk(t1)− x̄(t1)

t1 − t0

∥∥∥∥+

∥∥∥∥xk(t0)− x̄(t0)

t1 − t0

∥∥∥∥+ µ

≤4µeK + µ

≤µ̃,

which readily gives us the claimed result in (2.17).
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It remains to justify theW 1,2-convergence of zk(t) to z̄(t) in (2.16). Using (2.20) for j = 0

with xk(t0) = x0, the construction of ak(t), and the Newton-Leibniz formula, it suffices to

show that the sequence of (ẋk(t), u̇k(t)) converges to ( ˙̄x(t), ˙̄u(t)) strongly in L2[0, T ]. To this

end we have∫ T

0

∥∥ẋk(t)− wk1(t)
∥∥2dt =

k−1∑
j=0

(tj+1 − tj)
∥∥−vkj − wk1j∥∥2

=
k−1∑
j=0

hkdist
2

(
− x̄(tj+1)− x̄(tj)

tj+1 − tj
;F
(
zk(tj)

))

≤
k−1∑
j=0

hk

(
K
∥∥xk(tj)− x̄(tj)

∥∥+

∥∥∥∥ x̄(tj+1)− x̄(tj)

tj+1 − tj
− ˙̄x(tj)

∥∥∥∥)2

≤2
k−1∑
j=0

hkK
2
∥∥xk(tj)− x̄(tj)

∥∥2
+ 2

k−1∑
j=0

hk

∥∥∥∥ x̄(tj+1)− x̄(tj)

tj+1 − tj
− ˙̄x(tj)

∥∥∥∥2

≤2
k−1∑
j=0

hkK
2
(
2hkµe

K
)2

+ 2
k−1∑
j=0

hk

∥∥∥∥ x̄(tj+1)− x̄(tj)

tj+1 − tj
− ˙̄x(tj)

∥∥∥∥2

≤8TK2h2
kµ

2e2K + 2
k−1∑
j=0

hk

∥∥∥∥ x̄(tj+1)− x̄(tj)

tj+1 − tj
− ˙̄x(tj)

∥∥∥∥2

→ 0

as k →∞ due to (2.11), (2.18), and the definition of wk(t). It follows furthermore that∫ T

0

∥∥u̇k(t)− wk2(t)
∥∥2
dt =

∫ T

0

∥∥∥∥uk(tj+1)− uk(tj)
hk

− ū(tj+1)− ū(tj)

hk

∥∥∥∥2

dt

=

∫ T

0

∥∥∥∥uk(tj+1)− ū(tj+1)

hk
− uk(tj)− ū(tj)

hk

∥∥∥∥2

dt

=

∫ T

0

∥∥∥∥xk(tj+1)− x̄(tj+1)

hk
− xk(tj)− x̄(tj)

hk

∥∥∥∥2

dt

=

∫ T

0

∥∥∥∥xk(tj+1)− xk(tj)
hk

− x̄(tj+1)− x̄(tj)

hk

∥∥∥∥2

dt

=

∫ T

0

∥∥ẋk(t)− wk1(t)
∥∥2
dt→ 0 as k →∞

due to the above convergence of {ẋk(·)}. This verifies (2.16) and completes the proof of the

theorem. �
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2.3 Existence of Optimal Sweeping Solutions and Relaxation

In this section we start studying optimal solutions to the original sweeping control prob-

lem (P ). By taking into account the discussion above and further applications, our main

attention is paid to the parametric family of problems (P τ ) as τ ≥ 0 with (P 0) = (P ), which

are different from (P ) only in that the control constraint (1.9) is replaced by those in (2.9).

First we establish the following existence theorem of optimal solutions for (P τ ) in the the

class of W 1,2([0, T ]) functions.

Theorem 2.3 (existence of sweeping optimal solutions). Given r > 0 and T > 0,

consider the optimal control problem (P τ ) for any fixed τ ∈ [0, τ ] as τ := min{r, T} in

the equivalent form of the differential inclusion (2.8) over all the W 1,2[0, T ] triples z(·) =

(x(·), u(·), a(·)). In addition to the assumptions in (H1) and (H2), suppose that along some

minimizing sequence of zk(·) = (xk(·), uk(·), ak(·)), k ∈ IN , we have that {u̇k(·)} is bounded

in L2([0, T ];Rn) while {ak(·)} is bounded in W 1,2([0, T ];Rd) and that the running cost ` in

(1.5) is convex with respect to the velocity variables (ẋ, u̇, ȧ). Then each sweeping control

problem (P τ ) admits an optimal solution.

Proof. Fix any τ ∈ [0, τ ] and deduce from Proposition (2.1) that the set of feasible solu-

tions to (P τ ) is nonempty. It follows from the assumption imposed on {(uk(·), ak(·))} by

basic functional analysis that the sequence {(u̇k(·), ȧk(·))} is weakly compact in L2([0, T ];

Rn+d). Thus there are functions ϑu(·) ∈ L2([0, T ];Rn) and ϑa(·) ∈ L2([0, T ];Rd) such that

u̇k(·) → ϑu(·) and ȧk(·) → ϑa(·) along some subsequence k → ∞ weakly in L2([0, T ];Rn)

and L2([0, T ];Rd), respectively. By taking into account that ‖uk(0)‖ = r by (2.9) and that

the sequence {ak(0)} is bounded, we can assume without loss of generality that uk(0)→ u0

and ak(0) → a0 as k → ∞ for some u0 ∈ Rn and a0 ∈ Rd. Defining now the absolutely
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continuous functions ū : [0, T ]→ Rn and ā : [0, T ]→ Rd by

ū(t) := u0 +

∫ t

0

ϑu(s)ds and ā(t) := a0 +

∫ t

0

ϑa(s)ds, (2.28)

we see that (uk(·), ak(·)) → (ū(·), ā(·)) in the norm of W 1,2([0, T ];Rn×d). This implies that

(ū(·), ā(·)) ∈ W 1,2([0, T ];Rn×d) and that ū(·) satisfies the constraints in (2.9). Furthermore,

it follows from Proposition (2.1) that the trajectories xk(·) of (2.8) uniquely generated by

(uk(·), ak(·)) are uniformly bounded in W 1,2([0, T ];Rn), and hence a subsequence of them

converges to some x̄(·) ∈ W 1,2([0, T ];Rn).

Let us show that the limiting triple z̄(·) satisfies (2.8) with F (z) defined in (2.5) and that

J [x̄, ū, ā] ≤ lim inf
k→∞

J [xk, uk, ak] (2.29)

for the cost functional (1.5). To proceed, we apply the Mazur weak closure theorem to the

sequence {żk(·)}, which tells us that the sequence of convex combination of żk(·) converges to

˙̄z(·) weakly in L2[0, T ], and so its subsequence converges to ˙̄z(t) for a.e. t ∈ [0, T ]. It follows

from the above that z̄(·) satisfies the differential inclusion (2.8) due to the convexity of the

sets F (z). Using finally the imposed convexity of the running cost ` in ż and the assumptions

in (H2) together with the Lebesgue dominated convergence theorem yields (2.29) and thus

completes the proof of the theorem. �

We can see that the underlying assumption of Theorem (2.3) is the convexity of the

integrand ` with respect to velocities. This assumption, which is not needed for deriving

necessary optimality conditions, can be generally relaxed (and even fully dismissed in rather

broad nonconvex settings from the viewpoint of actual solving optimization problems for dif-

ferential inclusions) due to the so-called Bogoluybov-Young relaxation procedure. To describe
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it in the setting of (P τ ), denote by `F (t, x, u, a, ẋ, u̇, ȧ) the convexification of the integrand

in (1.5) on the set F (x, u, a) from (2.5) with respect to the velocity variables (ẋ, u̇, ȧ) for all

t, x, u, a, i.e., the largest convex and l.s.c. function majorized by `(t, x, u, a, ·, ·, ·) on this set;

we put ̂̀ :=∞ at points out of F (x, u, a). Define now the relaxed sweeping problem (Rτ ) by

minimize Ĵ [z] := ϕ
(
x(T )

)
+

∫ T

0

̂̀
F

(
t, x(t), u(t), a(t), ẋ(t), u̇(t), ȧ(t)

)
dt (2.30)

over all the triples z(·) = (x(·), u(·), a(·)) ∈ W 1,2[0, T ] satisfying the constraints in (2.9). Of

course, there is no difference between problems (P τ ) and (Rτ ) if the integrand ` is convex with

respect to (ẋ, u̇, ȧ). Furthermore, Theorem (2.3) ensures the existence of optimal solutions to

(Rτ ). The strong relationship between the original and relax/convexified problems, known

as relaxation stability, is that in many situations the optimal values of the cost functionals

therein agree. This phenomenon has been well recognized for differential inclusions with

Lipschitzian right-hand sides in state variables (see [49]), which is never the case for the

sweeping process. A more subtle result of this type is obtained in [19, Theorem 4.2] for

differential inclusions satisfying the modified one-sided Lipschitz property, which however

is also restrictive in applications to sweeping control. The relaxation stability result that

directly concerns sweeping control problems is given in [20, Theorem 2] while it deals only

with the case of controlled perturbations. In general, relaxation stability in sweeping optimal

control is an open question.

Our current study here and its continuation in [10] concern local optimal solutions to

(P τ ) involving a local version of relaxation stability. Following [35], we say that z̄(·) is a

relaxed intermediate local minimizer (r.i.l.m) for (P τ ) if it is feasible to this problem with

J [z̄] = Ĵ [z̄] and if there are numbers α ≥ 0 and ε > 0 such that J [z̄] ≤ J [z] for any feasible
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solution z(·) to (P τ ) satisfying

‖z(t)− z̄(t)‖ < ε for all t ∈ [0, T ] and α

∫ T

0

‖ż(t)− ˙̄z(t)‖2
dt < ε. (2.31)

This notion distinguishes local minimizers that lie between classical weak and strong minima

in continuous-time variational problems and can be strictly different from both of them even

in fully convex settings; see [37] for discussions, examples, and references. It is clear that

from the viewpoint of deriving necessary optimality conditions we can confine ourselves to

the case of α = 1.

2.4 Discrete Approximations of Local Optimal Solutions

In this section we construct a sequence of well-posed discrete approximations of each

problem (P τ ) as 0 ≤ τ ≤ τ with τ = min{r, T} and then employ this method to the study of

relaxed intermediate local minimizers for this problem. Given any r.i.l.m. z̄ = (x̄(·), ū(·), ā(·))

for (P τ ) and the discrete mesh ∆k from (2.10), for every k ∈ IN define the discrete sweeping

control problem (P τ
k ) as follows: minimize

Jk[z
k] := ϕ(xkk) + hk

k−1∑
j=0

`

(
tkj , x

k
j , u

k
j , a

k
j ,
xkj+1 − xkj

hk
,
ukj+1 − ukj

hk
,
akj+1 − akj

hk

)

+
k−1∑
j=0

∫ tkj+1

tkj

(∥∥∥∥xkj+1 − xkj
hk

− ˙̄x(t)

∥∥∥∥2

+

∥∥∥∥ukj+1 − ukj
hk

− ˙̄u(t)

∥∥∥∥2

+

∥∥∥∥akj+1 − akj
hk

− ˙̄a(t)

∥∥∥∥2)
dt

+dist2

(∥∥∥∥uk1 − uk0hk

∥∥∥∥;
(
−∞, µ̃

])
+ dist2

( k−2∑
j=0

∥∥∥∥ukj+2 − 2ukj+1 + ukj
hk

∥∥∥∥;
(
−∞, µ̃

])

+
∥∥∥xk1 − xk0

hk
− ˙̄x(0)

∥∥∥2

(2.32)
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over elements zk := (xk0, x
k
1, . . . , x

k
k, u

k
0, u

k
1, . . . , u

k
k−1, a

k
0, a

k
1, . . . , a

k
k−1) satisfying the con-

straints

xkj+1 ∈ xkj−hkF (xkj , u
k
j , a

k
j ) for j = 0, . . . , k−1 with (xk0, u

k
0, a

k
0) =

(
x0, ū(0), ā(0)

)
, (2.33)

〈
x∗i , x

k
k − ukk

〉
≤ 0 for i = 1, . . . ,m, (2.34)

‖ukj‖ = r for j = jτ (k), . . . , jτ (k);

r − τ − εk ≤ ‖ukj‖ ≤ r + τ + εk for j ≤ jτ (k)− 1 and j ≥ jτ (k) + 1,

(2.35)

∥∥(xkj , u
k
j , a

k
j )−

(
x̄(tkj ), ū(tkj ), ā(tkj )

)∥∥ ≤ ε/2 for j = 0, . . . , k − 1, (2.36)

k−1∑
j=0

∫ tkj+1

tkj

(∥∥∥∥xkj+1 − xkj
hk

− ˙̄x(t)

∥∥∥∥2

+

∥∥∥∥ukj+1 − ukj
hk

− ˙̄u(t)

∥∥∥∥2

+

∥∥∥∥akj+1 − akj
hk

− ˙̄a(t)

∥∥∥∥2)
dt ≤ ε

2
,

(2.37)

∥∥∥∥uk1 − uk0tk1 − tk0

∥∥∥∥ ≤ µ̃+ 1, and
k−2∑
j=0

∥∥∥∥ukj+2 − 2ukj+1 + ukj
hk

∥∥∥∥ ≤ µ̃+ 1, (2.38)

where ε > 0 is taken from definition (2.31) with α = 1 while εk and µ̃ are taken from

Theorem (2.2).

Let us first show that each problem (P τ
k ) admits an optimal solution for all large k ∈ IN ;

this issue is unavoidable in employing the method of discrete approximations to study local

minimizers for (P τ ).

Proposition 2.4 (existence of optimal solutions to discrete approximations). Sup-

pose that (H1) holds and that (H2) is also satisfied around the given local minimizer z̄(·) for

(P τ ). Then each problem (P τ
k ) admits an optimal solution provided that k ∈ IN is sufficiently

large.
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Proof. Theorem (2.2) tells us that the set of feasible solutions to (P τ
k ) is nonempty for all

large k ∈ IN . Moreover, the constraints in (2.35)–(2.37) ensure that this set is bounded.

To justify the claimed existence of optimal solutions to (P τ
k ) by the Weierstrass existence

theorem, it remains to verify that this set is closed. To proceed, take a sequence zν(·) =

zν := (xν0, . . . , x
ν
k, u

ν
0, . . . , u

ν
k−1, a

ν
0, . . . , a

ν
k−1) of feasible solutions for (P τ

k ) converging to some

z(·) = z := (x0, . . . , xk, u0, . . . , uk−1, a0, . . . , ak−1) as ν → ∞ and show that z is feasible to

(P τ
k ) as well. Observe that 〈x∗i , xj−uj〉 = limν→∞〈x∗i , xνj−uνj 〉 ≤ 0 for all i = 1, . . . ,m, and j =

0, . . . , k−1, and so xj−uj ∈ C for all j = 0, . . . , k−1. Picking now i ∈ {1, . . . ,m}\I(xj−uj),

we have 〈x∗i , xj−uj〉 < 0, which yields 〈x∗i , xνj−uνj 〉 < 0 for ν sufficiently large. Then it follows

that i ∈ {1, . . . ,m}\I(xνj − uνj ) and hence I(xνj − uνj ) ⊂ I(xj − uj) for ν ∈ IN sufficiently

large. By taking (2.5) and (2.7) into account, we get the equalities

xνj+1 − xνj = −hk
( ∑
i∈I(xνj−uνj )

λνjix
∗
i + f(xνj , a

ν
j )

)
= −hk

( ∑
i∈I(xj−uj)

λνjix
∗
i + f(xνj , a

ν
j )

)
,

where λνji := 0 if i ∈ I(xj − uj)\I(xνj − uνj ). This shows therefore that

xνj+1 − xνj
−hk

− f(xνj , a
ν
j ) =

∑
i∈I(xj−uj)

λνjx
∗
i ∈ N(xj − uj;C).

Passing there to the limit as ν →∞ and using the closedness of N(xj − uj;C) give us

xj+1 − xj
−hk

− f(xj, aj) ∈ N(xj − uj;C),

which ensures that xj+1 ∈ xj−hkF (xj, uj, aj) and thus completes the proof of the proposition.

�

The next theorem is a key result of the method of discrete approximations in sweeping

optimal control. It shows that optimal solutions to (P τ ) and (P τ
k ) are so closely related

that solving the continuous-time control problem (P τ ) for small τ ≥ 0 can be practically
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replaced by solving its finite-dimensional discrete counterparts (P τ
k ) when k is sufficiently

large. Moreover, it justifies the possibility to derive necessary optimality conditions for local

minimizers of (P τ ) by passing to the limit from those in (P τ
k ) as k →∞.

Theorem 2.5 (strong discrete approximation of intermediate local minimizers).

Let z̄(·) = (x̄(·), ū(·), ā(·)) be a r.i.l.m. for problem (P τ ), where τ ∈ [0, τ ] with τ = min{r, T}.

In addition to the assumptions in Theorem (2.2) and Proposition (2.4) imposed on z̄(·), sup-

pose that both terminal and running costs in (1.5) are continuous at x̄(T ) and at (t, z̄(t), ˙̄z(t))

for a.e. t ∈ [0, T ], respectively, and that `(·, z, ż) is uniformly majorized by a summable func-

tion near the given local minimizer. Then any sequence of piecewise linearly extended to [0, T ]

optimal solutions z̄k(·) = (x̄k(·), ūk(·), āk(·)) of (P τ
k ) converges to z̄(·) in the norm topology

of W 1,2([0, T ];R2n+d) with

x̄k1 − x̄k0
hk

→ ˙̄x(0) as k →∞ (2.39)

and the validity of the estimates∥∥∥∥ ūk1 − ūk0hk

∥∥∥∥ ≤ µ̃, lim sup
k→∞

k−2∑
j=0

∥∥∥∥ ūkj+2 − 2ūkj+1 + ūkj
hk

∥∥∥∥ ≤ µ̃, (2.40)

where the number µ̃ is calculated in (2.17).

Proof. Fix a sequence of optimal solutions z̄k(·) to (P τ
k ), which exists by Proposition (2.4).

It is easy to see that all the statements of the theorem are implied by the equality

lim
k→∞

∫ T

0

(∥∥ ˙̄x(t)− ˙̄xk(t)
∥∥2

+
∥∥ ˙̄u(t)− ˙̄uk(t)

∥∥2
+
∥∥ ˙̄a(t)− ˙̄ak(t)

∥∥2
)
dt

+
∥∥∥ x̄k1 − x̄k0

hk
− ˙̄x(0)

∥∥∥2

+ dist2

(∥∥∥∥ ūk1 − ūk0hk

∥∥∥∥;
(
−∞, µ̃

])
+dist2

( k−2∑
j=0

∥∥∥∥ ūkj+2 − 2ūkj+1 + ūkj
hk

∥∥∥∥;
(
−∞, µ̃

])
= 0.

(2.41)
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To justify (2.41), suppose that it does not hold, i.e., there is a subsequence of natural num-

bers (without relabeling) along which the limit in (2.41) equals to some c > 0. By the

weak compactness of the unit ball in L2([0, T ];R2n+d) we can find a triple (v(·), w(·), q(·)) ∈

L2([0, T ];R2n+d) and yet another subsequence of {zk(·)}–again without relabeling–such that

(
˙̄xk(·), ˙̄uk(·), ˙̄ak(·)

)
→
(
v(·), w(·), q(·)

)
weakly in L2([0, T ];R2n+d).

Define now the absolutely continuous function z̃(·) := (x̃(·), ũ(·), ã(·)) : [0, T ]→ R2n+d by

z̃(t) :=
(
x0, ū(0), ā(0)

)
+

∫ t

0

(v(s), w(s), q(s)
)
ds, t ∈ [0, T ],

which gives us ˙̃z(t) = (v(t), w(t), q(t)) a.e. on [0, T ] and implies that ˙̄zk(·) → ˙̃z(·) =

( ˙̃x(·), ˙̃u(·), ˙̃a(·)) weakly in L2([0, T ];R2n+d) and therefore z̃(·) ∈ W 1,2([0, T ];R2n+d). As fol-

lows from the Mazur weak closure theorem, there exists a sequence of convex combinations of

˙̄zk(·) that converges to ˙̃z(·) strongly in L2([0, T ];R2n+d) and thus almost everywhere on [0, T ]

along a subsequence. It is clear that the limiting u-component ũ(·) obeys the constraints in

(2.9). Let us verify that z̃(·) satisfies the differential inclusion (1.6), where the moving set

C(t) is generated by ũ(·) in (1.7).

To proceed, observe first that x̃(t)− ũ(t) = limk→∞(x̄k(t)− ūk(t)) ∈ C by the closedness

of the polyhedron C. It follows from the above that there are a function ν : IN → IN and a

sequence of real numbers {α(k)j| j = k, . . . , ν(k)} such that

α(k)j ≥ 0,

ν(k)∑
j=k

α(k)j = 1, and

ν(k)∑
j=k

α(k)j ˙̃z
j
(t)→ ˙̃z(t) a.e. t ∈ [0, T ]
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as k →∞. Then by the closedness and convexity of the normal cone we have the relationships

− ˙̃x(t)−f
(
x̃(t), ã(t)

)
= lim

k→∞

− ν(k)∑
j=k

α(k)j ˙̄xj(t)−
ν(k)∑
j=k

α(k)jf
(
x̄j(t), āj(t)

)
= lim

k→∞

∑
i∈I(x̃(t)−ũ(t))

ν(k)∑
j=k

α(k)jλ
j
i

x∗i ∈ N
(
x̃(t)− ũ(t);C

)
a.e. t ∈ [0, T ],

where I(·) is taken from (2.6), and where λji = 0 if i ∈ I(x̃(t) − ũ(t))\I(xj(t) − uj(t)) for

j = k, . . . , ν(k) and all large k ∈ IN . It shows by (2.7) that z̃(·) satisfies (2.8) and hence the

constraints in (1.8).

Consider further the integral functional

I[y] :=

∫ T

0

‖y(t)− ˙̄z(t)‖2
dt

is l.s.c. in the weak topology of L2([0, T ];R2n+d) due to the convexity of the integrand in y.

Hence

I( ˙̃z) =

∫ T

0

∥∥∥ ˙̃z(t)− ˙̄z(t)
∥∥∥2

dt ≤ lim inf
k→∞

k−1∑
j=0

∫ tkj+1

tkj

∥∥∥∥∥ z̄kj+1 − z̄kj
hk

− ˙̄z(t)

∥∥∥∥∥
2

dt (2.42)

by the construction of z̃(·). Passing to the limit in (2.36) and (2.37) as k → ∞ and using

(2.42), we get

‖z̃(t)− z̄(t)‖ ≤ ε/2 on [0, T ] and

∫ T

0

∥∥∥ ˙̃z(t)− ˙̄z(t)
∥∥∥2

dt ≤ ε/2.

This means that z̃(·) belongs to the given neighborhood of z̄(·) in W 1,2([0, T ];R2n+d). Fur-

thermore, the definition of `F in (2.30) and its convexity in the velocity variables yield∫ T

0

̂̀
F

(
t, x̃(t), ũ(t), ã(t), ˙̃x(t), ˙̃u(t), ˙̃a(t)

)
dt

≤ lim inf
k→∞

hk

k−1∑
j=0

`

(
tkj , x̄

k
j , ū

k
j , ā

k
j ,
x̄kj+1 − x̄kj

hk
,
ūkj+1 − ūkj

hk
.
ākj+1 − ākj

hk

)
.

Thus the passage to the limit in the cost functional of (P τ
k ) and the assumption on c > 0 in
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the negation of (2.41) together with (H2) bring us to the relationships

Ĵ [z̃] + c = ϕ
(
x̃(T )

)
+

∫ T

0

̂̀
F

(
t, x̃(t), ũ(t), ã(t), ˙̃x(t), ˙̃u(t), ˙̃a(t)

)
dt+ c ≤ lim inf

k→∞
Jk[z̄

k]. (2.43)

Applying now Theorem (2.2) to the r.i.l.m. z̄(·) gives us a sequence {zk(·)} of feasible solu-

tions to (P τ
k ) whose extensions to the whole interval [0, T ] strongly approximate z̄(·) in the

W 1,2 topology with the additional convergence in (2.13). Since z̄k(·) is an optimal solution

to (P τ
k ), we have

Jk[z̄
k] ≤ Jk[z

k] for each k ∈ IN. (2.44)

It follows from the structure of the cost functionals in (P τ
k ), the strong W 1,2-convergence of

zk(·) → z̄(·) together with (2.13) in Theorem (2.2), and the continuity assumptions on ϕ

and ` imposed in this theorem that Jk[z
k] → J [z̄] as k → ∞. Then passing to the limit in

(2.44) gives us

lim sup
k→∞

Jk[z̄
k] ≤ J [z̄]. (2.45)

Combining finally (2.43) and (2.45) with c > 0 and the definition of r.i.l.m., we get

Ĵ [z̃] + c ≤ J [z̄] = Ĵ [z̄], and so Ĵ [z̃] < Ĵ [z̄],

which clearly contradicts the fact that z̄(·) is a r.i.l.m. for problem (P τ ). This justifies the

validity of (2.41) and thus completes the proof of the theorem. �

2.5 Generalized Differentiation and Calculations

After establishing close connections between optimal solutions to the original and dis-

cretized sweeping control problems, our further goal is to derive effective necessary optimality

conditions to each problem (P τ
k ) defined in (2.32)–(2.38). Looking at this problem, we can
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see that it is intrinsically nonsmooth, even if both terminal and running costs are assumed

to be differentiable, which is not the case here. The main reason for this is the unavoidable

presence of the geometric constraints (2.33) with F given by (2.5) whose increasing number

comes from the discretization of the sweeping differential inclusion (1.6). We can deal with

such problems by using the robust generalized differential constructions, which are basic in

variational analysis and its applications; see, e.g., the books [6, 36, 45] and the references

therein. Here we first recall their definitions with a brief overview of the needed properties

and then deduce from [22] major coderivative calculations for the mapping F in (2.5) via the

initial data of the sweeping process. This together with available calculus rules of generalized

differentiation plays a crucial role in deriving verifiable necessary optimality conditions for

the sweeping control problems under consideration.

Given a set-valued mapping/multifunction G : Rn ⇒ Rm, denote by

Lim sup
x→x̄

G(x) :=
{
y ∈ Rm

∣∣ ∃ sequences xk → x̄, yk → y such that

yk ∈ G(xk), k ∈ IN
} (2.46)

the (Kuratowski-Painlevé) outer limit of G at x̄ with G(x̄) 6= ∅. Considering now a set

Ω ⊂ Rn locally closed around x̄ ∈ Ω, the (Mordukhovich basic/limiting) normal cone to Ω

at x̄ is defined by

N(x̄; Ω) := NΩ(x̄) := Lim sup
x→x̄

{cone [x− Π(x; Ω)]} (2.47)

via the outer limit (2.46), where Π(x; Ω) stands for the Euclidean projection of x onto Ω.

When Ω is convex, (2.47) reduces to the normal cone of convex analysis, but it is often non-

convex in nonconvex settings. The crucial feature of (2.47) and the associated subdifferential

and coderivative constructions for functions and multifunctions (see below) is full calculus
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based on variational and extremal principles.

For a set-valued mapping F : Rn ⇒ Rm with its graph

gphF :=
{

(x, y) ∈ Rn × Rm
∣∣ y ∈ F (x)

}
locally closed around (x̄, ȳ), the coderivative of F at (x̄, ȳ) generated by (2.47) is defined by

D∗F (x̄, ȳ)(u) :=
{
v ∈ Rn

∣∣ (v,−u) ∈ N
(
(x̄, ȳ); gphF

)}
, u ∈ Rm. (2.48)

When F : Rn → Rm is single-valued and continuously differentiable (C1) around x̄, we have

D∗F (x̄)(u) =
{
∇F (x̄)∗u

}
for all u ∈ Rm

via the adjoint/transposed Jacobian matrix ∇F (x̄)∗, where ȳ = F (x̄) is omitted.

Given an extended-real-valued l.s.c. function ϕ : Rn → R with its domain and epigraph

domϕ :=
{
x ∈ Rn

∣∣ ϕ(x) <∞
}

and epiϕ :=
{

(x, α) ∈ Rn+1
∣∣ α ≥ ϕ(x)

}
,

the (first-order) subdifferential of ϕ at x̄ ∈ domϕ is generated geometrically by (2.47) as

∂ϕ(x̄) :=
{
v ∈ Rm | (v,−1) ∈ N

(
(x̄, ϕ(x̄)); epiϕ

)}
while admitting various equivalent analytic representations that can be found, e.g., in the

books [36,45].

Our main emphases here is on evaluating the coderivative of the set-valued mapping F

from (2.5) entirely via the given data of the perturbed sweeping process. Note that the partial

normal cone structure of the mapping F reveals the second-order subdifferential nature of

the aforementioned construction in the sense of [34]. For simplicity in further applications,

suppose below that the perturbation function f is smooth while observing that the available
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calculus rules allow us to consider Lipschitzian perturbations.

Having in mind representation (2.8) of the mapping F in terms of the generating vectors

x∗i of the convex polyhedron (1.7) with the active constraint indices I(x̄) in (2.7), consider

the following subsets:

I0(y) :=
{
i ∈ I(x̄)

∣∣ 〈x∗i , y〉 = 0
}

and I>(y) :=
{
i ∈ I(x̄)

∣∣ 〈x∗i , y〉 > 0
}
, y ∈ Rn. (2.49)

The next theorem provides an effective upper estimate of the coderivative of F with

ensuring the equality therein under an additional assumption on x∗i .

Theorem 2.6 (calculating the coderivative of the sweeping control mapping).

Given F in (2.5) with C from (1.7), assume that f is smooth and denote G(x) := N(x;C).

Then for any (x, u, a) ∈ Rn ×Rn ×Rd and w − f(x, a) ∈ G(x− u) we have the coderivative

upper estimate

D∗F (x, u, a, w)(y) ⊂
{
z∗ ∈ Rn × Rn × Rd

∣∣∣∣ z∗ =

(
∇xf(x, a)∗y +

∑
i∈I0(y)∪I>(y)

γix
∗
i ,

−
∑

i∈I0(y)∪I>(y)

γix
∗
i ,∇af(x, a)∗y

)}
, y ∈ domD∗G

(
x− u,w − f(x, a)

)
,

(2.50)

where I0(y) and I>(y) are defined in (2.49) with x̄ = x − u, and where γi ∈ R for i ∈

I0(y) while γi ≥ 0 for i ∈ I>(y). Furthermore, (2.50) holds as an equality and the domain

domD∗G
(
x− u,w − f(x, a)

)
can be computed by

domD∗G
(
x− u,w − f(x, a)

)
=

{
y| ∃ λi ≥ 0 such that w − f(x, a) =

∑
i∈I(x−u)

λix
∗
i ,

λi > 0 =⇒ 〈x∗i , y〉 = 0

} (2.51)

provided that the generating vectors {x∗i | i ∈ I(x − u)} of the polyhedron C are linearly

independent.
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Proof. Picking any y ∈ domD∗G(x− u,w − f(x, a)) and z∗ ∈ D∗F (x, u, a,X)(y) and then

denoting G̃(x, u, a) := G(x−u) and f̃(x, u, a) := f(x, a), we deduce from [37, Theorem 1.62]

that

z∗ ∈ ∇f̃(x, u, a)∗y +D∗G̃
(
x, u, a, w − f(x, a)

)
(y).

Observe then the obvious representation

G̃(x, u, a) = G ◦ g(x, u, a) with g(x, u, a) := x− u,

where the latter mapping has the surjective derivative. It follows from [37, Theorem 1.66]

that

z∗ ∈ ∇f̃(x, u, a)∗y +∇g(x, u, a)∗D∗G
(
x− u,w − f(x, a)

)
(y). (2.52)

Employing now in (2.52) the coderivative estimate for the normal cone mapping G obtained

in [22, Theorem 4.5] with the exact coderivative calculation given in [22, Theorem 4.6]

under the linear independence of the generating vectors x∗i and also taking into account the

structure of the mapping f̃ in (2.52), we arrive at (2.50) and the equality therein under the

aforementioned assumption. �

2.6 Necessary Optimality Conditions

In this section we derive necessary conditions for optimal solutions to each discrete ap-

proximation problems (P τ
k ) with k ∈ IN and 0 ≤ τ ≤ τ = min{r, T}. As shown in Theo-

rem (2.5), for large k ∈ IN and any fixed τ ∈ [0, τ ] the constructed optimal solutions z̄k(·) to

(P τ
k ) are practically undistinguished (in theW 1,2 norm) from the optimal solution z̄(·) to the

continuous-time sweeping control problem (P τ ), and so the necessary optimality conditions
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for z̄k(·) obtained below can be well treated as “almost optimality" necessary conditions for

the solution z̄(·) to (P τ ) playing virtually the same role in applications.

To proceed, we first establish necessary optimality conditions for (P τ
k ) in the discrete

Euler-Lagrange form via the generalized differential constructions of Section 6; cf. [37]. Then

employing the complete coderivative calculations of Theorem (2.6) for the underlying map-

ping F from (2.8) allows us to derive necessary optimality conditions for the sweeping control

problem (P τ
k ) entirely in terms of its initial data. Throughout this section we assume that

the cost functions ϕ and ` in (2.32) are locally Lipschitzian around the points in question

and for brevity drop indicating the time-dependence of the running cost `.

Theorem 2.7 (Euler-Lagrange conditions for discrete approximations). Fixing any

τ ∈ [0, τ ] and k ∈ IN , consider an optimal solution z̄k = (x0, x̄
k
1, . . . , x̄

k
k, ū

k
0, . . . , ū

k
k, ā

k
0, . . . , ā

k
k)

to problem (P τ
k ). Then there exist dual elements λk ≥ 0, αk = (αk1, . . . , α

k
m) ∈ Rm

+ , ξ
k =

(ξk0 , . . . , ξ
k
k) ∈ Rk+1, and pkj = (pxkj , p

uk
j , p

ak
j ) ∈ Rn × Rn × Rd as j = 0, . . . , k satisfying the

conditions

λk + ‖αk‖+ ‖ξk‖+
k−1∑
j=0

‖pxkj ‖+ ‖puk0 ‖+ ‖pak0 ‖ 6= 0, (2.53)

αki
〈
x∗i , x̄

k
k − ūkk

〉
= 0, i = 1, . . . ,m, (2.54)

ξkj (ν − ‖ūkj‖) ≤ 0 for all ν ∈
[
r − τ − εk, r + τ + εk

]
whenever j = 0, . . . , jτ (k)− 1 and j = jτ (k) + 1, . . . , k.

(2.55)

− pxkk ∈ λk∂ϕ(x̄kk) +
m∑
i=1

αki x
∗
i p

uk
k =

m∑
i=1

αki x
∗
i − 2ξkk ū

k
k, p

ak
k = 0, (2.56)

pukj+1 = λk(vukj + h−1
k θukj ), pakj+1 = λk(vakj + h−1

k θakj ), j = 0, . . . , k − 1, (2.57)
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(
pxkj+1 − pxkj

hk
− λkwxkj −

χkj
hk
,
pukj+1 − pukj

hk
− λkwukj ,

pakj+1 − pakj
hk

− λkwakj , pxkj+1

−λk(vxkj + h−1
k θxkj )

)
∈
(

0,
2

hk
ξkj ū

k
j , 0, 0

)
+N

((
x̄kj , ū

k
j , ā

k
j ,
x̄kj+1 − x̄kj
−hk

)
; gphF

) (2.58)

for j = 1, . . . , k − 1 and with the subgradient vectors

(
wxkj , w

uk
j , w

ak
j , v

xk
j , v

uk
j , v

ak
j

)
∈ ∂`

(
z̄kj ,

z̄kj+1 − z̄kj
hk

)
, j = 0, . . . , k − 1, (2.59)

where the sequence of εk ↓ 0 as k →∞ is taken from (2.23), where

χkj :=


(−1)j+12

(
x̄k1 − x̄k0
hk

− ˙̄x(0)

)
if j = 0, 1,

0 otherwise,

(2.60)

and where the vector triples (θxkj , θ
uk
j , θ

ak
j ) for each j = 0, . . . , k − 1 are defined by

(θxkj , θ
uk
j , θ

ak
j ) := 2

∫ tj+1

tj

(
x̄kj+1 − x̄kj

hk
− ˙̄x(t),

ūkj+1 − ūkj
hk

− ˙̄u(t),
ākj+1 − ākj

hk
− ˙̄a(t)

)
dt. (2.61)

Proof. Let y := (x0, . . . , xk, u0, . . . , uk, a0, . . . , ak, X0, . . . , Xk−1,

U0, . . . , Uk−1, A0, . . . , Ak−1), where the the starting point x0 is fixed but the other variables

depend on k while we omit the upper index “k" for simplicity. Given ε > 0 in (P τ
k ), define

the problem of mathematical programming (MP ) by:

minimize ϕ0[y] := ϕ(xk) + hk

k−1∑
j=0

`(xj, uj, aj, Xj, Uj, Aj)

+
k−1∑
j=0

∫ tj+1

tj

∥∥∥∥(Xj, Uj, Aj)− ˙̄z(t)

∥∥∥∥2

dt+

∥∥∥∥xk1 − xk0hk
− ˙̄x(0)

∥∥∥∥2

+dist2

(∥∥∥∥uk1 − uk0hk

∥∥∥∥; (−∞, µ̃]

)
+ dist2

( k−2∑
j=0

‖Uj+1 − Uj‖ ;
(
−∞, µ̃

])
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subject to finitely many equality, inequality, and geometric constraints

bxj (y) :=xj+1 − xj − hkXj = 0 for j = 0, . . . , k − 1,

buj (y) :=uj+1 − uj − hkUj = 0 for j = 0, . . . , k − 1,

baj (y) :=aj+1 − aj − hkAj = 0 for j = 0, . . . , k − 1,

gi(y) := 〈x∗i , xk − uk〉 ≤ 0 for i = 1, . . . ,m

dj(y) :=‖uj‖2 − r2 = 0 for j = jτ (k), . . . , jτ (k),

y ∈ Ωj :=
{
y
∣∣ r − τ − εk ≤ ‖uj‖ ≤ r + τ + εk

}
for j = 0, . . . , jτ (k)− 1

and j = jτ (k) + 1, . . . , k,

φj(y) := ‖(xj, uj, aj)− z̄(tj)‖ − ε/2 ≤ 0 for j = 0, . . . , k,

φk+1(y) :=
k−1∑
j=0

∫ tj+1

tj

(
‖(Xj, Uj, Aj)− ˙̄z(t)‖2

)
dt− ε

2
≤ 0,

φk+2(y) :=
k−2∑
j=0

‖Uj+1 − Uj‖ ≤ µ̃+ 1, φk+3(y) := ‖u1 − u0‖ ≤ (µ̃+ 1)(tk1 − tk0),

y ∈ Ξj :=
{
y| −Xj ∈ F (xj, uj, aj)

}
for j = 0, . . . , k − 1,

y ∈ Ξk :=
{
y|x0 is fixed, (u0, a0) =

(
ū(0), ā(0)

)}
,

where the number µ̃ is is calculated in (2.17). It follows directly from the construction above

that problem (MP ) is equivalent to (P τ
k ) for any fixed k ∈ IN and τ ∈ [0, τ ].

Necessary optimality conditions for problem (MP ) in terms of the generalized differential

tools of Section 6 can be deduced from [37, Theorem 5.24]. We specify them for the optimal

solution ȳ = (z̄, Z̄) to (MP ), where z̄ := (x̄0, . . . , x̄k, ū0, . . . , ūk, ā0, . . . , āk) is generated by the

optimal solution z̄k to (P τ
k ) while Z̄ := (X̄0, . . . , X̄k−1, Ū0, . . . , Ūk−1, Ā0, . . . , Āk−1) signifies

the discrete “velocity" determined by the constraints bj(ȳ) = 0. It follows from Theorem (2.5)
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that all the inequality constraints in (MP ) relating to functions φj as j = 0, . . . , k + 2 are

inactive for large k, and so the corresponding multipliers do not appear in the optimality

conditions. Thus we find λ ≥ 0, α = (α1, . . . , αm) ∈ Rm
+ , ξ = (ξ0, . . . , ξk) ∈ Rk+1, pj =

(pxj , p
u
j , p

a
j ) ∈ R2n+d as j = 0, . . . , k, and

y∗j =
(
x∗0j, . . . , x

∗
kj, u

∗
0j, . . . , u

∗
kj, a

∗
0j, . . . , a

∗
kj, X

∗
0j, . . . , X

∗
(k−1)j, U

∗
0j, . . . , U

∗
(k−1)j,

A∗0j, . . . , A
∗
(k−1)j

)
for j = 0, . . . , k, which are not zero simultaneously while satisfying (2.55) and the conditions

y∗j ∈
{ N(ȳ; Ξj) +N(ȳ; Ωj) if j ∈

{
0, . . . , jτ (k)− 1

}
∪
{
jτ (k) + 1, . . . , k

}
,

N(ȳ; Ξj) if j ∈
{
jτ (k), . . . , jτ (k)

}
,

(2.62)

− y∗0 − . . .− y∗k ∈ λ∂ϕ0(ȳ) +
m∑
i=1

αi∇gi(ȳ) +

jτ (k)∑
j=jτ (k)

ξj∇dj(ȳ) +
k−1∑
j=0

∇bj(ȳ)∗pj+1, (2.63)

αigi(ȳ) = 0 for i = 1, . . . ,m. (2.64)

Note that the first line in (2.62) comes from applying the normal cone intersection formula

from [36, Corollary 3.5] to ȳ ∈ Ωj∩Ξj for j ∈ {0, . . . , jτ (k)−1}∪{jτ (k)+1, . . . , k}, where the

qualification condition imposed therein can be easily verified. It follows from the structure

of the sets Ωj and Ξj that (2.55) holds while the inclusions in (2.62) are equivalent to

(
x∗jj, u

∗
jj, a

∗
jj,−X∗jj

)
∈ N

((
x̄kj , ū

k
j , ā

k
j ,
x̄kj+1 − x̄kj
−hk

)
; gphF

)
,

for j = jτ (k), . . . , jτ (k),(
x∗jj, u

∗
jj − ψuj , a∗jj,−X∗jj

)
∈ N

((
x̄kj , ū

k
j , ā

k
j ,
x̄kj+1 − x̄kj
−hk

)
; gphF

)
,

for j 6∈ {jτ (k), . . . , jτ (k)}

(2.65)

with every other components of y∗j equal to zero, where ψ
u
j ∈ N(ūj, h

−1([r−τ−εk, r+τ+εk]))
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and h(u) := ‖u‖2. It then follows from [36, Theorem 1.17] that

N(ūj, h
−1([r − τ − εk, r + τ + εk])) = 2ūjN(‖ūj‖; [r − τ − εk, r + τ + εk]).

Hence ψuj = 2ξjūj, where ξj satisfies (2.55) and j 6∈ {jτ (k), . . . , jτ (k)}. Similarly we conclude

that the triple (x∗k(0), u∗k(0), a∗k(0)) determined by the normal cone to Ξk is the only potential

nonzero component of y∗k. This shows that

−y∗0−y∗1 − . . .− y∗k =
(
− x∗0k − x∗00,−x∗11, . . . ,−x∗k−1,k−1, 0,−u∗0k − u∗00, . . . ,

−u∗k−1,k−1, 0,−a∗0k − a∗00,−a∗11, . . . ,−a∗k−1,k−1, 0,−X∗00, . . . ,−X∗k−1,k−1, 0, . . . , 0
)
.

(2.66)

Next we calculate the three sums on the right-hand side of (3.9). It is easy to see that( m∑
i=1

αi∇gi(ȳ)

)
(xk,uk,ak)

=

( m∑
i=1

αix
∗
i ,−

m∑
i=1

αix
∗
i , 0

)
,

( jτ (k)∑
j=jτ (k)

ξj∇dj(ȳ)

)
uj

=2ξjūj for j = 0, . . . , k with ξj = 0

if j 6∈ {jτ (k), . . . , jτ (k)};

( k−1∑
j=0

(∇fj(ȳ))∗pj+1

)
(xj ,uj ,aj)

=


−p1 if j = 0,

pj − pj+1 if j = 1, . . . , k − 1,

pk if j = k,( k−1∑
j=0

(∇fj(ȳ))∗pj+1

)
(X,U,A)

=− hkp =
(
− hkpx1 , . . . ,−hkpxk,−hkpu1 , . . . ,−hkpuk ,

− hkpa1, . . . ,−hkpak
)
.

Furthermore, the subdifferential sum rule from [36, Theorem 2.13] gives us the inclusion

∂ϕ0(ȳ) ⊂ ∂ϕ(x̄k) + χk0, χ
k
1, 0, . . . , 0) + hk

k−1∑
j=0

∂`(x̄j, ūj, āj, X̄j, Ūj, Āj)

+
k−1∑
j=0

∇ρj(ȳ) + ∂σ(ȳ),
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where χk0, χ
k
1 are defined in (2.60), where the functions ρ(·) and σ(·) are defined by

ρj(y) :=

∫ j+1

j

‖(Xj, Uj, Aj)− ˙̄z(t)‖2
dt and

σ(y) := dist2

(∥∥∥∥uk1 − uk0hk

∥∥∥∥;
(
−∞, µ̃

])
+ dist2

( k−2∑
j=0

‖Uj+1 − Uj‖ ;
(
−∞, µ̃

])
.

Note that the function ψ(x) := dist2(x; (−∞, µ̃]) is obviously differentiable with ∇φ(x) = 0

for all x ≤ µ̃. Combining this with second estimate in (2.40) yields ∂σ(ȳ) = {0}. Observe also

that the nonzero part of ∇ρj(ȳ) is calculated by ∇Xj ,Uj ,Ajρ(ȳ) = (θxj , θ
u
j , θ

a
j ), where the latter

triple is defined in (2.61). Hence the set λ∂ϕ0(ȳ) in (3.9) is represented as the collection of

λ(hkw
x
0 + χk0, hkw

x
1 + χk1, . . . , hkw

x
k−1, ϑ

k, hkw
u
0 , . . . , hkw

u
k−1, 0, hkw

a
0 , . . . , hkw

a
k−1, 0,

θx0 + hkv
x
0 , . . . , θ

x
k−1 + hkv

x
k−1, θ

u
0 + hkv

u
0 , . . . , θ

u
k−1 + hkv

u
k−1, θ

a
0 + hkv

a
0 , . . . ,

θak−1 + hkv
a
k−1)

where ϑk ∈ ∂ϕ(x̄k), χ
k
j is defined in (2.60), and the components of (wx, wu, wa, vx, vu, va)

satisfy (2.59). This together with (2.66) and the above gradient formulas shows that (3.9)

amounts to the relationships

− x∗0k − x∗00 = λhkw
x
0 + χk0 − px1 , (2.67)

− x∗jj = λhkw
x
j + χkj + pxj − pxj+1 for j = 1, . . . , k − 1 with χj = 0 if j 6= 1, (2.68)

0 = λϑk +
m∑
i=1

αix
∗
i + pxk, (2.69)

− u∗0k − u∗00 = λhkw
u
0 + 2ξ0ū0 − pu1 , (2.70)

− u∗jj = λhkw
u
j + 2ξjūj + puj − puj+1, (2.71)
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0 = −
k∑
i=1

αix
∗
i + puk + 2ξkūk, (2.72)

− a∗0k − a∗00 = λhkw
a
0 − pa1, (2.73)

− a∗jj = λhkw
a
j + paj − paj+1 for j = 1, . . . , k − 1, (2.74)

0 = pak, (2.75)

−X∗jj = λ(hkv
x
j + θxj )− hkpxj+1 for j = 0, . . . , k − 1, (2.76)

0 = λ(hkv
u
j + θuj )− hkpuj+1 for j = 0, . . . , k − 1, (2.77)

0 = λ(hkv
a
j + θaj )− hkpaj+1 for j = 0, . . . , k − 1. (2.78)

Now we are ready to justify all the conditions claimed in the theorem. Observe first that

(2.64) clearly yields (2.54). Next we extend the vector p by a zero component by putting

p0 := (x∗0k, u
∗
0k, a

∗
0k). Then the conditions in (2.56) follow from (3.20), (3.23), and (3.26).

Furthermore, the conditions in (3.4) follow from (3.28) and (3.29). Using the relationships

pxj+1 − pxj
hk

− λwxj −
χkj
hk

=
x∗jj
hk
,

puj+1 − puj
hk

− λwuj =
u∗jj
hk

+ 2
ξj
hk
ūj,

paj+1 − paj
hk

− λwaj =
a∗jj
hk
, pxj+1 −

1

hk
λθxj − λvxkj =

X∗jj
hk

,

which hold due to (3.19), (3.22), (3.25), and (3.27), and then substituting them into the

left-hand side of (3.13), we arrive at (3.5) for all j = 0, . . . , k− 1. To verify the nontriviality

condition (2.53), suppose by contradiction that λ = 0, α = 0, ξ = 0, puk0 = 0, pak0 = 0, and

pxj = 0 for j = 0, . . . , k−1. Then (3.20) yields that pxk = 0 and thus pxj = 0 for all j = 0, . . . , k.
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Observe further that x∗0k = px0 = 0, and so the conditions in (3.18), (3.19), and (3.27) imply

that x∗jj = 0 and X∗jj = 0 for j = 0, . . . , k− 1. The validity of (3.28) and (3.29) ensures that

puj = 0 and paj = 0 for j = 1, . . . , k, which in turn show by (3.21), (3.22), (3.24), and (3.25)

that u∗jj = 0 and a∗jj = 0 for j = 0, . . . , k − 1. As mentioned above, all the components of

y∗j different from (x∗jj, u
∗
jj, a

∗
jj, X

∗
jj) are zero for j = 0, . . . , k − 1. Hence we have y∗j = 0 for

j = 0, . . . , k − 1 and similarly y∗k = 0 since the only potential nonzero component of this

vector is x∗0k = px0 = 0. We get therefore that y∗j = 0 for all j = 0, . . . , k, which violates the

nontriviality condition for (MP ) and thus completes the proof of the theorem. �

The final result of this section employs the effective coderivative calculations for the

sweeping control mapping taken from Theorem (2.6) that allows us to obtain necessary op-

timality conditions in (P τ
k ) expressed entirely via the given problem data and the minimizer

under consideration under the additional assumption on the smoothness of f , which is im-

posed for simplicity. Furthermore, we derive an enhanced nontriviality relation in the case

of linear independence of the generating vectors x∗i for the underlying convex polyhedron C

from (1.7).

Theorem 2.8 (optimality conditions for discretized sweeping inclusions via their

initial data). Let z̄k = (x̄k, ūk, āk) be an optimal solution to problem (P τ
k ) in the general

framework of Theorem (2.7) with F given by (2.7) via the active constraint indices I(·) in

(2.6) and locally smooth perturbation function f , let the active index subsets I0(·) and I>(·)

be taken from (2.49), and let the triples (θxkj , θ
uk
j , θ

ak
j ) be defined in (2.61). Then there exist

dual elements (λk, ξk, pk) as in Theorem (2.7) together with vectors ηkj ∈ Rm
+ as j = 0, . . . , k
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and γkj ∈ Rm as j = 0, . . . , k − 1 satisfying (2.55), the nontriviality condition

λk + ‖ηkk |+ ‖ξk‖+
k−1∑
j=0

‖pxkj ‖+ ‖puk0 ‖+ ‖pak0 ‖ 6= 0, (2.79)

the primal-dual dynamic equations for all j = 0, . . . , k − 1 with χkj defined in (2.60):

x̄kj+1 − x̄kj
−hk

− f(x̄kj , ā
k
j ) =

∑
i∈I(x̄kj−ūkj )

ηkjix
∗
i , (2.80)

pxkj+1 − pxkj
hk

− λkwxkj −
χkj
hk

= ∇xf(x̄kj , ā
k
j )
∗ (λk(vxkj + h−1

k θxkj )− pxkj+1

)
+

∑
i∈I0(−pxkj+1+λk(h−1

k θxkj +vxkj ))∪I>(−pxkj+1+λk(h−1
k θxkj +vxkj ))

γkjix
∗
i ,

(2.81)

pukj+1 − pukj
hk

− λkwukj −
2

hk
ξkj ū

k
j

= −
∑

i∈I0(−pxkj+1+λk(h−1
k θxkj +vxkj ))∪I>(−pxkj+1+λk(h−1

k θxkj +vxkj ))

γkjix
∗
i ,

(2.82)

pakj+1 − pakj
hk

− λkwakj = ∇af(x̄kj , ā
k
j )
∗ (λk(vxkj + h−1

k θxkj )− pxkj+1

)
(2.83)

with (wxkj , w
uk
j , w

ak
j , v

xk
j , v

uk
j , v

ak
j ) taken from (2.59), and the right endpoint transversality

conditions

− pxkk ∈ λk∂ϕ(x̄kk) +
m∑
i=1

ηkkix
∗
i , pukk =

m∑
i=1

ηkkix
∗
i − 2ξkk ū

k
k, pakk = 0 (2.84)

such that the following implications hold:

[ 〈
x∗i , x̄

k
j − ūkj

〉
< 0
]

=⇒ ηkji = 0, (2.85)
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

i ∈ I0

(
−pxkj+1 + λk(h−1

k θxkj + vxkj )
)

=⇒ γkji ∈ R,

i ∈ I>
(
−pxkj+1 + λk(h−1

k θxkj + vxkj )
)

=⇒ γkji ≥ 0,[
i 6∈ I0

(
−pxkj+1 + λk(h−1

k θxkj + vxkj )
)
∪ I>

(
−pxkj+1 + λk(h−1

k θxkj + vxkj )
) ]

=⇒ γkji = 0

(2.86)

for j = 0, . . . , k− 1 and i = 1, . . . ,m. Furthermore, we have the constraint conditions (2.55)

together with

[
〈x∗i , x̄kj − ūkj 〉 < 0

]
=⇒ γkji = 0 for j = 0, . . . , k − 1 and i = 1, . . . ,m, (2.87)

[
〈x∗i , x̄kk − ūkk〉 < 0

]
=⇒ ηkki = 0 for i = 1, . . . ,m. (2.88)

Finally, the linear independence of the vectors {x∗i | i ∈ I(x̄kj − ūkj )} ensures the implication

ηkji > 0 =⇒
[〈
x∗i ,−pxkj+1 + λk

(
h−1
k θxkj + vxkj

)〉
= 0
]

(2.89)

and the validity of the enhanced nontriviality condition

λk + ‖ξk‖+ ‖puk0 ‖+ ‖pxk1 ‖ 6= 0. (2.90)

Proof. The coderivative definition (2.48) allows us to equivalently rewrite the discrete Euler-

Lagrange inclusion (3.5) in the coderivative form(
pxkj+1 − pxkj

hk
− λkwxkj −

χkj
hk
,
pukj+1 − pukj

hk
− λkwukj −

2

hk
ξkj ū

k
j ,
pakj+1 − pakj

hk
− λkwakj

)
∈ D∗F

(
x̄kj , ū

k
j , ā

k
j ,
x̄kj+1 − x̄kj
−hk

)(
λk(h−1

k θxkj + vxkj )− pxkj+1

)
, j = 0, . . . , k − 1.

(2.91)

Taking into account that
x̄kj+1 − x̄kj
−hk

− f
(
x̄kj , ā

k
j

)
∈ G

(
x̄kj − ūkj

)
for j = 0, . . . , k − 1 with

G(x) = N(x;C), we find by (2.91) vectors ηkj ∈ Rm
+ for j = 0, . . . , k− 1 such that conditions

(2.80) and (3.30) hold. Using now the coderivative inclusion (2.50) from Theorem (2.6) with



www.manaraa.com

43

x := x̄kj , u := ūkj , a := ākj , w :=
x̄kj+1 − x̄kj
−hk

, and y := λk(h−1
k θxkj + vxkj )− pxkj+1 shows γkj ∈ Rm

and the relationships(
pxkj+1 − pxkj

hk
− λkwxkj −

χkj
hk
,
pukj+1 − pukj

hk
− λkwukj −

2

hk
ξkj ū

k
j ,
pakj+1 − pakj

hk
− λkwakj

)
=

(
∇xf(x̄kj , ā

k
j )
∗ (λk(vxkj + h−1

k θxkj )− pxkj+1

)
+

∑
i∈I0(−pxkj+1+λk(h−1

k θxkj +vxkj ))∪I>(−pxkj+1+λk(h−1
k θxkj +vxkj ))

γkjix
∗
i ,

−
∑

i∈I0(−pxkj+1+λk(h−1
k θxkj +vxkj ))∪I>(−pxkj+1+λk(h−1

k θxkj +vxkj ))

γkjix
∗
i ,∇af(x̄kj , ā

k
j )

∗ (λk(vxkj + h−1
k θxkj )− pxkj+1

))
are satisfied for all j = 0, . . . , k − 1 and thus ensure the validity of all the conditions in

(2.81), (2.82), (2.83), (2.86), and (2.87). Defining now ηkk := αk via αk from the statement

of Theorem (2.53) yields ηkj ∈ Rm
+ for j = 0, . . . , k and allows us to deduce the nontriviality

condition (2.79) from that in (2.53) and the transversality conditions in (2.84) from those

in (2.56) and (3.4). Implication (2.88) is a direct consequence of (2.54) and the definition of

ηkk .

Assume finally that the generating vectors {x∗i | i ∈ I(x̄kj − ūkj )} of the convex polyhedron

C are linearly independent. It is not hard to observe that the inclusion

λk(h−1
k θxkj + vxkj )− pxkj+1 ∈ domD∗G

(
x̄kj − ūkj ,

x̄kj+1 − x̄kj
−hk

− f(x̄kj , ā
k
j )

)
,

which follows from (2.91), in this case yields (2.89) due to (2.51). It remains to verify the

enhanced nontriviality condition (2.90) under the imposed linear independence. Suppose on

the contrary that λk = 0, ξk = 0, puk0 = 0, and pxk1 = 0. Then pukj = 0 for j = 0, . . . , k and

pakj = 0 for j = 1, . . . , k by (3.4). Furthermore, it follows from the second condition in (2.84)
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with pukk = 0 that
∑m

i=1 η
k
kix
∗
i = 0. This implies by definition (2.6) of the active constraint

indices and the imposed linear independence of x∗i over this index set that ηkk = 0, and so

pxkk = 0 by the first condition in (2.84). On the other hand, we get from (2.82) that

∑
i∈I0(−pxkj+1+λk(h−1

k θxkj +vxkj ))∪I>(−pxkj+1+λk(h−1
k θxkj +vxkj ))

γkjix
∗
i = 0.

Combining this with (2.81) and pxkk = 0 shows that pxkj = 0 for all j = 2, . . . , k − 1. It then

follows from (2.81) that
pxk2 − pxk1 = χk1 + hk∇xf(x̄k1, ā

k
1)(−pxk2 ),

pxk1 − pxk0 = χk0 + hk∇xf(x̄k0, ā
k
0)(−pxk1 ).

Since pxk2 = 0 and pxk1 = 0 then χk1 = 0 and thus χk0 = −χk1 = 0, which implies pxk0 = 0.

We finally deduce from (2.83) that pak0 = 0. This clearly implies that (2.79) is violated and

hence justifies the validity of (2.90). �
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CHAPTER 3 OPTIMALITY CONDITIONS FOR

A CONTROLLED SWEEPING PRO-

CESS

In this chapter we derive necessary optimality conditions for relaxed intermediate local

minimizers of the sweeping control problem (P τ ) under consideration in the general case of

0 ≤ τ ≤ τ = min{r, T} with some specifications and improvements in the case where τ is

not an endpoint.

Proposition 3.1 (precise calculating the coderivatives of the normal cone map-

pings associated with convex polyhedra). Let G(x) = N(x;C) be the normal cone

mapping associated with the convex polyhedron (1.7), and let the featured active index sub-

sets I0(·) and I>(·) be defined in (2.49). Given (x̄, ȳ) ∈ gphG, assume that the generating

elements {x∗i | i ∈ I(x̄)} of (1.4) along the active constraint indices (2.6) are linearly inde-

pendent. Then we have the coderivative expression

D∗G(x̄, ȳ)(u) = span
{
x∗i
∣∣ i ∈ I0(u)

}
+ cone

{
x∗i
∣∣ i ∈ I>(u)

}
for all u ∈ domD∗G(x̄, ȳ),

where the latter coderivative domain is characterized by

u ∈ domD∗G(x̄, ȳ)⇐⇒
[
i ∈ J(x̄, ȳ) =⇒ 〈x∗i , u〉 = 0

]
via the so-called strict complementarity subset of active indices J(x̄, ȳ) := {i ∈ I(x̄)| λi > 0}

for a unique collection of the multipliers λi ≥ 0 coming from the representation ȳ =
∑
i∈I(x̄)

λix
∗
i .

Before establishing the aforementioned necessary optimality conditions for (P τ ) we make

the following remark. It is well known that the subdifferential mapping used in condition

(2.59) of Theorem 2.7 is robust (i.e., closed-graph) with respect to subdifferentiation vari-

ables. However, in the discrete-time and continuous-time settings under consideration allows
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the dependence of the running cost ` on the time parameter, which is not under subdifferen-

tiation. For the limiting procedure in what follows, we require the subdifferential robustness

with respect to the time parameter. It is not a restrictive assumption that holds, in par-

ticular, for smooth functions with time-continuous derivatives as well as in rather general

nonsmooth settings discussed, e.g., in [35, 37]. We recall also that (as assumed in [10, The-

orem 3.1]) that the local optimal solution z̄(·) under consideration satisfies the sweeping

differential inclusion (1.9) at all the the mesh points with the right and left derivatives at

t = 0 and t = T , respectively.

Theorem 3.2 (general necessary optimality conditions for the perturbed sweep-

ing process). Let z̄(·) = (x̄(·), ū(·), ā(·)) be a r.i.l.m. for problem (P τ ) with any τ ∈ [0, τ ].

In addition to the assumptions of Theorem 2.8, suppose that ` in (1.5) is continuous in t

a.e. on [0, T ] and admits the representation

`(t, z, ż) = `1(t, z, ẋ) + `2(t, u̇) + `3(t, ȧ), (3.1)

where the (local) Lipschitz constants of `1(t, ·, ·) and `3(t, ·) can be chosen as essentially

bounded on [0, T ] and continuous at a.e. t ∈ [0, T ] including t = 0, while `2 is differentiable

in u̇ on Rn satisfying

‖∇u̇`2(t, u̇, ȧ)‖ ≤ L‖u̇‖ and ‖∇u̇`2(t, u̇1)−∇u̇`2(t, u̇2)‖ ≤ L|t− s|+ L‖u̇1 − u̇2‖ (3.2)

for some constant L > 0, all numbers t, s ∈ [0, T ], ȧ ∈ Rd, and all vectors u̇, u̇1, u̇2 ∈ Rn.

Then there exist a number λ ≥ 0, an adjoint arc p(·) = (px(·), pu(·), pa(·)) ∈ W 1,2([0, T ];

Rn × Rn × Rd), subgradient functions w(·) = (wx(·), wu(·), wa(·)) ∈ L2([0, T ];R2n+d) and
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v(·) = (vx(·, vu(·), va(·)) ∈ L2([0, T ];R2n+d) well defined at t = 0 and satisfying the inclusion

(
w(t), v(t)

)
∈ co ∂`

(
t, z̄(t), ˙̄z(t)

)
for a.e. t ∈ [0, T ], (3.3)

and measures γ = (γ1, . . . , γn) ∈ C∗([0, T ];Rn), ξ ∈ C∗([0, T ];R) on [0, T ] such that we have:

• Primal-dual dynamic relationships:

− ˙̄x(t) =
m∑
i=1

ηi(t)x
∗
i + f

(
x̄(t), ā(t)

)
for a.e. t ∈ [0, T ], (3.4)

where ηi(·) ∈ L2([0, T ];R+) are well defined at t = T being uniquely determined by represen-

tation (3.4);

ṗ(t) = λw(t)+
(
∇xf

(
x̄(t), ā(t)

)∗(
λvx(t)−qx(t)

)
, 0,∇af

(
x̄(t), ā(t)

)∗(
λvx(t)−qx(t)

))
, (3.5)

qu(t) = λ∇u̇`
(
t, ˙̄u(t)

)
, qa(t) ∈ λ∂ȧ`3

(
t, ˙̄a(t)

)
for a.e. t ∈ [0, T ], (3.6)

where the vector function q = (qx, qu, qa) : [0, T ]→ Rn×Rn×Rd is of bounded variation with

its left-continuous representative given for all t ∈ [0, T ], except at most a countable subset,

by

q(t) := p(t)−
∫

[t,T ]

(
dγ(s), 2ū(s)dξ(s)− dγ(s), 0

)
. (3.7)

Moreover, for a.e. t ∈ [0, T ] including t = T and all i = 1, . . . ,m we have the implications

〈x∗i , x̄(t)− ū(t)〉 < 0 =⇒ ηi(t) = 0, ηi(t) > 0 =⇒ 〈x∗i , λvx(t)− qx(t)〉 = 0. (3.8)

• Transversality conditions at the right and left endpoints, respectively:
−px(T )−

∑
i∈I(x̄(T )−ū(T ))

ηi(T )x∗i ∈ λ∂ϕ
(
x̄(T )

)
,

pu(T )−
∑

i∈I(x̄(T )−ū(T ))

ηi(T )x∗i ∈ 2ū(T )N
(
‖ū(T )‖; [r − τ, r + τ ]

)
, pa(T ) = 0;

(3.9)
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
qx(0) ∈ Rn, qa(0) = λva(0), qu(0) ∈ λvu(0)− 2ū(0)N

(
‖ū(0)‖; [r − τ, r + τ ]

)

+D∗G
(
x0 − ū(0),− ˙̄x(0)− f(x̄(0), ā(0)

)(
− qx(0) + λvx(0)

)
(3.10)

with the coderivative D∗G of G(·) = N(·;C) explicitly calculated in Proposition 3.1 and with

∑
i∈I(x̄(T )−ū(T ))

ηi(T )x∗i ∈ N
(
x̄(T )− ū(T );C

)
. (3.11)

• Measure nonatomicity conditions:

(a) If t ∈ [0, T ) and 〈x∗i , x̄(t)−ū(t)〉 < 0 for all i = 1, . . . ,m, then there exists a neighborhood

Vt of t in [0, T ) such that γ(V ) = 0 for all Borel subsets V of Vt.

(b) Assume that τ ∈ (0, τ) and take any t ∈ [0, τ) ∪ (T − τ, T ] with r − τ < ‖ū(t)‖ < r + τ .

Then there exists a neighborhood Wt of t in (0, τ) ∪ (T − τ, T ) such that ξ(W ) = 0 for all

Borel subsets W of Wt.

• Nontriviality conditions:

(a) Impose one of the following assumptions on the local minimizer z̄(·) and the data of (P τ )

as τ ∈ [0, τ ]:

either l(r + 2τ) < (r − 2τ)2, or 〈x̄(t), ū(t)〉 6= ‖ū(t)‖2 for all t ∈ [0, T ), (3.12)

where the constant l > 0 is calculated in (2.3) with u(·) = ū(·).1 Then we have

λ+ ‖qx(0)‖+ ‖qu(0)‖+ ‖p(T )‖ > 0 (3.13)

1Note that the first condition in (3.12) implies the second one for τ = 0, while in general they are
independent.
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provided that either τ < r or ū(T ) 6= 0.

(b) If in addition 0 < τ < r and the Jacobian ∇af(x, a) is surjective, the we have the follow-

ing enhanced nontriviality conditions while imposing the corresponding endpoint interiority

assumptions:

[
〈x∗i , x0 − ū(0)〉 < 0, i = 1, . . . ,m

]
=⇒

[
λ+ ‖qu(0)‖+ ‖p(T )‖ > 0

]
, (3.14)

[
〈x∗i , x0 − ū(0)〉 < 0, r − τ < ‖ū(0)‖ < r + τ, i = 1, . . . ,m

]
=⇒

[
λ+ ‖p(T )‖ > 0

]
, (3.15)

[
〈x∗i , x̄(T )−ū(T )〉 < 0, r−τ < ‖ū(T )‖ < r+τ, i = 1, . . . ,m

]
=⇒

[
λ+‖qx(0)‖+‖qu(0)‖ > 0

]
.

(3.16)

Proof. The derivation of the necessary optimality conditions for the given r.i.l.m. z̄(·) in

problem (P τ ) is based on passing the limit as k →∞ from the optimality conditions for the

strongly convergent sequence z̄k(·)→ z̄(·) of optimal solutions to the discrete problems (P τ
k )

obtained in Theorem 2.8. The proof is rather involved, and for the reader’s convenience we

split it into several steps.

Step 1: Subdifferential inclusion. Let us first justify (3.3). For each k ∈ IN define the

functions wk, vk : [0, T ]→ R2n+d as piecewise constant extensions to [0, T ] of the vectors wkj

and vkj that are defined on the mesh ∆k and satisfy the subdifferential inclusion (2.59) therein.

The assumptions made and the structure of ` in (3.1), (3.2) ensure that the subgradient sets

∂`(t, ·) are uniformly bounded near z̄(·) by the L2-Lipschitz constant of `, and thus the

sequence {(wk(·), vk(·))} is weakly compact in L2([0, T ];R2(2n+d)) := L2[0, T ]. This allows us



www.manaraa.com

50

to select a subsequence (no relabeling hereafter) converging

(
wk(·), vk(·)

)
→
(
w(t), v(t)

)
weakly in L2[0, T ] as k →∞

for some (w(·), v(·)) ∈ L2[0, T ]. Furthermore, the local Lipschitz continuity of `(0, ·, ·) yields

by (2.59) for j = 0 that the sequence {(wk0 , vk0)} is bounded and hence converges as k →∞ to

a pair (w0, v0) =: (w(0), v(0)) along a subsequence. It follows from the aforementioned Mazur

weak closure theorem that there are convex combinations of (wk(·), vk(·)), which converge

to (w(·), v(·)) in the L2-norm and hence a.e. on [0, T ] for some subsequence. Then passing

to the limit in (2.59) along the latter subsequence and taking into account the assumed a.e.

continuity of the running cost ` in t and robustness of its subdifferential in (z, ż) with respect

to all the variables, we arrive at the convexified inclusion (3.3).

Step 2: Passing to the limit in the primal equation. Our next aim is to arrive at the primal

equation (3.4) and the first implication in (3.8) with the corresponding functions ηi(·) by

passing to the limit in (2.80), (2.87) and (2.89). We start with considering the functions

θk(t) :=
θkj
hk

as t ∈ [tkj , t
k
j+1), j = 0, . . . , k − 1, k ∈ IN,

on [0, T ] with θkj taken from (2.61). It follows from the convergence z̄k(·) → z̄(·) in Theo-

rem 2.8 that∫ T

0

‖θxk(t)‖2dt =
k−1∑
j=0

‖θxkj ‖2

hk
≤ 4

hk

k−1∑
j=0

(∫ tkj+1

tkj

∥∥∥∥∥ ˙̄x(t)−
x̄kj+1 − x̄kj

hk

∥∥∥∥∥ dt
)2

≤4
k−1∑
j=0

∫ tkj+1

tkj

∥∥∥∥∥ ˙̄x(t)−
x̄kj+1 − x̄kj

hk

∥∥∥∥∥
2

dt = 4

∫ T

0

∥∥ ˙̄x(t)− ˙̄xk(t)
∥∥2
dt→ 0

(3.17)

and similarly for θuk(·) and θak(·). This yields the a.e. convergence of these functions to zero
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on [0, T ]. Moreover, the construction above shows that we can always have θk0 → 0 =: θ(0).

Further, it is easy to see that the assumed linear independence of {x∗i | i ∈ I(x̄(·)− ū(·))}

ensures the one for {x∗i | i ∈ I(x̄kj − ūkj )} by definition (2.6) and the strong convergence of

Theorem 2.8. This allows us to take the vectors ηkj ∈ Rm
+ from Theorem 2.8 and construct the

piecewise constant functions ηk(·) on [0, T ] by ηk(t) := ηkj for t ∈ [tkj , t
k
j+1) with ηk(T ) := ηkk .

It follows from (2.86) that

− ˙̄xk(t) =
m∑
i=1

ηki (t)x∗i + f
(
x̄k(tkj ), ā

k(tkj )
)

whenever t ∈ (tkj , t
k
j+1), k ∈ IN, (3.18)

via the corresponding components of ηk(t). On the other hand, the feasibility of z̄(·) to

(P τ ) yields − ˙̄x(t) ∈ G(x̄(t) − ū(t)) + f(x̄(t), ā(t)) for a.e. t ∈ [0, T ] with the closed-valued

normal cone mapping G(·) = N(·;C). Due to the measurability of G(·) by [45, Theorem 4.26]

and the measurable selection result from [45, Corollary 4.6] we find nonnegative measurable

functions ηi(·) on [0, T ] as i = 1, . . . ,m such that equation (3.4) and the first implication in

(3.8) hold. Combining (3.18) and (3.4) gives us

˙̄x(t)− ˙̄xk(t) =
m∑
i=1

[
ηki (t)− ηi(t)

]
x∗i + f

(
x̄k(tkj ), ā

k(tkj )
)
− f

(
x̄(t), ā(t)

)
for t ∈ (tkj , t

k
j+1) and j = 0, . . . , k − 1. Thus we get the estimate∥∥∥∥∥

m∑
i=1

[
ηi(t)− ηki (t)

]
x∗i

∥∥∥∥∥ ≤ ‖ ˙̄x(t)− ˙̄xk(t)‖+
∥∥f(x̄(t), ā(t)

)
− f

(
x̄k(tkj ), ā

k(tkj )
)∥∥ (3.19)

for t ∈ (tkj , t
k
j+1). For each k ∈ IN define now the function

νk(t) := max
{
tkj
∣∣ tkj ≤ t, 0 ≤ j ≤ k

}
for all t ∈ [0, T ]. (3.20)

Passing to the limit in (3.19) with replacing tkj by ν(t) and taking into account the strong

convergence z̄k(·) → z̄(·) together with the continuity of f on the left-hand side of (3.19),
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we get

∑
i∈I(x̄(t)−ū(t))

[
ηi(t)− ηki (t)

]
x∗i → 0 as k →∞ for a.e. t ∈ [0, T ].

Then the assumed linear independence of the generating vectors x∗i with i ∈ I(x̄(t) − ū(t))

ensures the a.e. convergence ηk(t)→ η(t) on [0, T ] as k →∞. Furthermore, we will show that

ηkk converges to the well-defined vector (η1(T ), . . . , ηm(T )) in Step 5. Proceeding similarly

to the proof of [13, Theorem 6.1], we can justify the extra regularity η(·) ∈ L2([0, T ];Rm
+ ),

which however is not used in what follows.

Step 3: Extensions of approximating dual elements. Here we extend discrete dual elements

from Theorem 2.8 to the whole interval [0, T ]. First construct qk(t) = (qxk(t), quk(t), qak(t))

on [0, T ] as the piecewise linear extensions of qk(tkj ) := pkj as j = 0, . . . , k. Then define

γk(t) on [0, T ] as piecewise constant γk(t) := γkj for t ∈ [tkj , t
k
j+1) and j = 0, . . . , k − 1 with

γk(tkk) := 0. We also set ξk(t) :=
ξkj
hk

for t ∈ [tkj , t
k
j+1) and j = 0, . . . , k − 1 with ξk(tkk) := ξkk ,

and

χk(t) :=


χkj
hk

for t ∈ [tkj , t
k
j+1) and j = 0, 1,

0 for t ∈ [tkj , t
k
j+1) and j = 2, . . . , k − 1.

Using the function νk(t) given in (3.20), we deduce respectively from (2.81), (2.82), and

(2.83) that

q̇xk(t)− λkwxk(t)− χk(t) =∇xf
(
x̄k(νk(t)), āk(νk(t)

)∗(
λk(vxk(t) + θxk(t))− qxk(νk(t) + hk)

)
+

∑
i∈I0(λk(vxk(t)+θxk(t))−qxk(νk(t)+hk))∪I>(λk(vxk(t)+θxk(t))−qxk(νk(t)+hk))

γki (t)x∗i ,

(3.21)
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q̇uk(t)− λkwuk(t) =2ξk(t)ūk
(
νk(t)

)
−

∑
i∈I0(λk(vxk(t)+θxk(t))−qxk(νk(t)+hk))∪I>(λk(vxk(t)+θxk(t))−qxk(νk(t)+hk))

γki (t)x∗i ,

(3.22)

q̇ak(t)− λkwak(t) = ∇af
(
x̄k(νk(t)), āk(νk(t)

)∗(
λk(vxk(t) + θxk(t))− qxk(νk(t) + hk)

)
(3.23)

for t ∈ (tkj , t
k
j+1) and j = 0, . . . , k − 1. Next we define pk(t) = (pxk(t), puk(t), pak(t)) on [0, T ]

by setting

pk(t) := qk(t) +

∫
[t,T ]

(
m∑
i=1

γki (s)x∗i , 2ξ
k(s)ūk

(
νk(s)

)
−

m∑
i=1

γki (s)x∗i , 0

)
ds (3.24)

for all t ∈ [0, T ]. This gives us pk(T ) = qk(T ) and the differential relation

ṗk(t) = q̇k(t)−

(
m∑
i=1

γki (t)x∗i , 2ξ
k(t)ūk

(
νk(t)

)
−

m∑
i=1

γki (t)x∗i , 0

)
a.e. t ∈ [0, T ]. (3.25)

It follows from (3.25), (3.21)–(3.23), and the definition of I0(·) and I>(·) in (2.49) that

ṗxk(t)− λkwxk(t)− χk(t) = ∇xf
(
x̄k(νk(t)), āk(νk(t)

)∗(
λk(vxk(t) + θxk(t))− qxk(νk(t) + hk)

)
,

(3.26)

ṗuk(t)− λkwuk(t) = 0, (3.27)

ṗak(t)− λkwak(t) = ∇af
(
x̄k(νk(t)), āk(νk(t)

)∗(
λk(vxk(t) + θxk(t))− qxk(νk(t) + hk)

)
, (3.28)

for every t ∈ (tkj , t
k
j+1), j = 0, . . . , k − 1. Define now the vector measures γkmes and ξkmes on

[0, T ] by∫
A

dγkmes :=

∫
A

m∑
i=1

γki (t)x∗i dt,

∫
A

dξkmes :=

∫
A

ξk(t)dt for any Borel subset A ⊂ [0, T ]

(3.29)

with dropping further the symbol “mes" for simplicity. By taking into account the preser-
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vation of all the relationships in Theorem 2.8 by normalization and the above constructions

of the extended functions on [0, T ], we can rewrite the nontriviality condition (2.54) as

λk+‖pk(T )‖+‖quk(0)‖+‖qxk(hk)‖+

∫ T

0

|ξk(t)|dt+ |ξkk |+
∫ T

0

∥∥∥∥∥
m∑
i=1

γki (t)x∗i

∥∥∥∥∥ dt = 1, k ∈ IN.

(3.30)

Step 4: Passing to the limit in dual dynamic relationships. Using (3.30) allows us to suppose

without loss of generality that λk → λ as k → ∞ for some λ ≥ 0. Let us next verify that

the sequence {(pxk0 , . . . , p
xk
k )}k∈IN is bounded in R(k+1)n. Indeed, we have by (2.81) that

pxkj = pxkj+1 − λkhkwxkj − χkj −∇xf(x̄kj , ā
k
j )
∗(λkhkv

xk
j + λkθxkj − hkpxkj+1)− hk

m∑
i=1

γkjix
∗
i (3.31)

for j = 0, . . . , k− 1. It follows from (3.17) and (3.30) that the quantities ∇xf(x̄kj , ā
k
j ), λ

kθxkj ,

and hk

m∑
i=1

γkjix
∗
i are uniformly bounded for j = 0, . . . , k − 1 while χkj → 0 as k →∞ due to

definition (2.60) and the first condition in (2.27). Furthermore, the imposed structure (3.1)

of ` and the assumptions on the Lipschitz constant L(t) of the running cost in (1.5), which

are equivalent to the Riemann integrability of L(·) on [0, T ], yield by (3.3) the relationships

k−1∑
j=0

‖hkwxkj ‖ =
k−1∑
j=0

‖hkwxk(tj)‖ ≤
k−1∑
j=0

hkL(tj) ≤ 2

∫
[0,T ]

L(t)dt =: L̃ <∞ (3.32)

and ensure similarly that
k−1∑
j=0

‖hkvxkj ‖ < L̃.

We will justify the boundedness of {(pxk0 , . . . , p
xk
k )}k∈IN . It follows from (3.31) that

‖pxkj ‖ ≤
(
1 + hk

∥∥∇xf(x̄kj , ā
k
j )
∥∥) ∥∥pxkj+1

∥∥+ λk
(∥∥hkwxkj ∥∥+

∥∥∇xf(x̄kj , ā
k
j )
∥∥∥∥hkvxkj ∥∥)

+ hk
∥∥∇xf(x̄kj , ā

k
j )
∥∥λk ∥∥θxk(tj)∥∥+ hk

∥∥∥∥∥
m∑
i=1

γkjix
∗
i

∥∥∥∥∥+ ‖χkj‖,
(3.33)
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for all j = 0, . . . , k − 1. Denote by

Akj := λk
(∥∥hkwxkj ∥∥+

∥∥∇xf(x̄kj , ā
k
j )
∥∥∥∥hkvxkj ∥∥)+ hk

∥∥∇xf(x̄kj , ā
k
j )
∥∥λk ∥∥θxk(tj)∥∥

+ hk

∥∥∥∥∥
m∑
i=1

γkjix
∗
i

∥∥∥∥∥
for j = 0, . . . , k − 1. Let M1 > 0 be a constant such that

∥∥∇xf(x̄kj , ā
k
j )
∥∥ ≤ M1 for all

j = 0, . . . , k and k ∈ IN .

We have

hk
∥∥∇xf(x̄kj , ā

k
j )
∥∥λk ∥∥θxk(tj)∥∥ ≤M1hk

∥∥θxk(tj)∥∥ = M1

√
hk

∫ tj+1

tj

‖θxk(t)‖2dt

for j = 0, . . . , k − 1, and hence

k−1∑
j=0

hk
∥∥∇xf(x̄kj , ā

k
j )
∥∥λk ∥∥θxk(tj)∥∥ ≤M1

√∫ T

0

‖θxk(t)‖2dt ↓ 0 as k →∞

On the other hand, we also have

k−1∑
j=0

hk

∥∥∥∥∥
m∑
i=1

γkjix
∗
i

∥∥∥∥∥ =

∫ T

0

∥∥∥∥∥
m∑
i=1

γki (t)x∗i

∥∥∥∥∥ dt ≤ 1

by (3.30).

We deduce from the above arguments, (3.32), and the boundedness of
{∥∥∇xf(x̄kj , ā

k
j )
∥∥}

that

k−1∑
j=0

Akj ≤M2

for some constant M2 > 0. Combining with (3.33) we come up to

‖pxkj ‖ ≤ (1 +M1hk)‖pxkj+1‖+ Akj + ‖χkj‖ (3.34)

for all j = 0, . . . , k − 1.
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Using the induction method we can show that

‖pxkj ‖ ≤ (1 +M1hk)
k−j‖pxkk ‖+

k−1∑
i=j

Aki (1 +M1hk)
i−j

≤ eM1 + eM1

k−1∑
i=0

Aki ≤ eM1(1 +M2)

for j = 2, . . . , k−1. The boundedness of pxk0 and pxk1 follows from (3.34) and the boundedness

of {pxkj }2≤j≤k. Thus we justify the boundedness of {(pxk0 , . . . , p
xk
k )}k∈IN .

To deal with the functions qxk(·), we derive from their construction and the equations in

(2.81) that

k−1∑
j=0

‖qxk(tj+1)− qxk(tj)‖ ≤
∥∥χk0∥∥+

∥∥χk1∥∥+ λk
k−1∑
j=0

‖hkwxkj ‖

+ hk

k−1∑
j=0

∥∥∇xf
(
x̄kj , ā

k
j

)∗(
λk(θxk(tj)− pxkj+1)

)∥∥
+

k−1∑
j=0

‖∇xf(x̄kj , ā
k
j )
∗(λkhkv

xk
j )‖+

∫ T

0

∥∥∥∥∥
m∑
i=1

γki (t)x∗i

∥∥∥∥∥ dt.
(3.35)

It comes from (3.32) that the first term on the right-hand side of (3.35) is bounded by λkL̃.

We also have

hk

k−1∑
j=0

‖∇xf
(
x̄kj , ā

k
j

)∗(
λk(θxk(tj)−pxkj+1)

)
‖ ≤ T max

0≤j≤k−1

{∥∥∇xf
(
x̄kj , ā

k
j

)∗(
λk(θxk(tj)−pxkj+1)

)
‖
}
,

which ensures the boundedness of the second term on the right-hand side of (3.35) by the

boundedness of {pxkj }k∈IN . Similarly we get the boundedness of the third term on the right-

hand side of (3.35), while this property of the fourth term therein follows from (3.30). This

shows by estimate (3.35) and the construction of qxk(t) on [0, T ] that the functions qxk(·) are

of uniformly bounded variation on this interval. In the same way we verify that quk(·) and

qak(·) are of uniformly bounded variation on [0, T ] and arrive therefore at this conclusion for
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the whole triple qk(·). It clearly implies that

2‖qk(t)‖ − ‖qk(0)‖ − ‖qk(T )‖ ≤ ‖qk(t)− qk(0)‖+ ‖qk(T )− qk(t)‖ ≤ var (qk; [0, T ])

for all t ∈ [0, T ], which justifies the uniform boundedness of qk(·) on [0, T ] is since both

sequences {qk(0)} and {qk(T )} are bounded by (3.30). Then the classical Helly selection

theorem allows us to find a function of bounded variation q(·) such that qk(t)→ q(t) as k →

∞ pointwise on [0, T ]. Employing further (3.30) and the measure construction in (3.29) tell

us that the measure sequences {γk} and {ξk} are bounded in C∗([0, T ];Rn) and C∗([0, T ];R)

respectively. It follows from the weak∗ sequential compactness of the unit balls in these spaces

that there are measures γ ∈ C∗([0, T ];Rn) and ξ ∈ C∗([0, T ];R) such that the pair (γk, ξk)

weak∗ converges to (γ, ξ) along some subsequence.

Combining the uniform boundedness of qk(·), wk(·), and vk(·) on [0, T ] with (3.24),

(3.26)–(3.28), and (3.30) allows us to deduce that the sequence {pk(·)} is bounded in

W 1,2([0, T ];R3n) and hence weakly compact in this space. By the Mazur weak closure the-

orem we find p(·) ∈ W 1,2([0, T ];R3n) such that a sequence of convex combinations of ṗk(t)

converges to ṗ(t) for a.e. t ∈ [0, T ]. Passing now to the limit in (3.26)–(3.28) as k →∞ and

using (3.17), we arrive at the representation of ṗ(·) in (3.5).

Next we proceed with deriving adjoint relationships involving the limiting function q(·)

of bounded variation on [0, T ]. Note to this end that if ηi(t) > 0 for some t ∈ [0, T ] and

i ∈ {1, . . . ,m}, then ηki (t) > 0 whenever k is sufficiently large due to the a.e. convergence

ηki (·)→ ηi(·) on [0, T ]. This implies by (2.89) that 〈x∗i ,−qxk(ν(t)+hk)+λk(θxk(t)+vxk(t))〉 =

0 for such k and t, and so we arrive at 〈x∗i ,−qx(t) + λvx(t)〉 = 0 while k → ∞, which thus
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justifies the second implication in (3.8).

Remembering the construction of qk(·) in Step 3 allows us to rewrite (2.82) and (2.83)

as, respectively,

quk
(
ν(t) + hk

)
= λk

(
vuk(t) + θuk(t)

)
and qak

(
ν(t) + hk

)
= λk

(
vak(t) + θak(t)

)
(3.36)

for t ∈ (tkj , t
k
j+1) and j = 0, . . . , k− 1. Passing to the limit in (3.36) with taking into account

(3.3) and the assumptions on `2, `3 in (3.1), we arrive at both equations in (3.6). Observe

further that∥∥∥∥∥
∫

[t,T ]

m∑
i=1

γki (s)x∗i ds−
∫

[t,T ]

dγ(s)

∥∥∥∥∥ =

∥∥∥∥∫
[t,T ]

dγk(s)−
∫

[t,T ]

dγ(s)

∥∥∥∥→ 0 as k →∞

for all t ∈ [0, T ] except a countable subset of [0, T ] by the weak∗ convergence of the measures

γk to γ in the space C∗([0, T ];Rn); cf. [52, p. 325] for similar arguments. This ensures by

(3.29) that ∫
[t,T ]

m∑
i=1

γki (s)x∗i ds→
∫

[t,T ]

dγ(s) as k →∞. (3.37)

To obtain (3.7) by passing to the limit in (3.25), consider next the estimate∥∥∥∥∫
[t,T ]

ξk(s)ūk
(
νk(s)

)
ds−

∫
[t,T ]

ū(s)dξ(s)

∥∥∥∥
≤
∥∥∥∥∫

[t,T ]

ξk(s)ūk
(
νk(s)

)
ds−

∫
[t,T ]

ξk(s)ū(s)ds

∥∥∥∥+

∥∥∥∥∫
[t,T ]

ξk(s)ū(s)ds−
∫

[t,T ]

ū(s)dξ(s)

∥∥∥∥
=

∥∥∥∥∫
[t,T ]

ξk(s)
[
ūk
(
νk(s)

)
− ū(s)

]
ds

∥∥∥∥+

∥∥∥∥∫
[t,T ]

ξk(s)ū(s)ds−
∫

[t,T ]

ū(s)dξ(s)

∥∥∥∥
(3.38)

and observe that the first summand in the rightmost part of (3.38) disappears as k → ∞

due to the uniform convergence ūk(·) → ū(·) on [0, T ] and the uniform boundedness of∫ T
0
|ξk(t)|dt by (3.30). The second summand therein also converges to zero for all t ∈ [0, T ]



www.manaraa.com

59

except some countable subset by the weak∗ convergence ξk → ξ in C∗([0, T ];R). Hence we

get ∫
[t,T ]

ξk(s)ūk(τ k(s))ds→
∫

[t,T ]

ū(s)dξ(s) as k →∞

and thus arrive at (3.7) by passing to the limit in (3.25). Finally at this step, observe that

the implications (3.8) follow directly by passing to the limit in their discrete counterparts

(2.87), (2.88), and (2.89).

Step 5: Transversality conditions. Let us first verify the right endpoint one (3.9). For all

k ∈ IN we have by the second condition in (2.84) and the normal cone representation from

(2.7) that

pukk + 2ξkk ū
k
k =

m∑
i=1

ηkkix
∗
i =

∑
i∈I(x̄kk−ū

k
k)

ηkkix
∗
i ∈ N(x̄kk − ūkk;C), (3.39)

where ηkki = 0 for i ∈ {1, . . . ,m}\I(x̄kk − ūkk). Denote ϑk :=
∑

i∈I(x̄kk−ū
k
k) η

k
kix
∗
i and observe

that a subsequence of {ϑk} converges to some ϑ due to the boundedness of {ξkk} by (3.30)

and the convergence of {pukk } and {ūkk} established above. Furthermore, it follows from the

robustness of the normal cone in (3.39), the convergence x̄kk − ūkk → x̄(T ) − ū(T ), and the

inclusion I(x̄kk− ūkk) ⊂ I(x̄(T )− ū(T )) for large k ∈ IN that ϑ ∈ N(x̄(T )− ū(T );C). Similarly

the inclusion in (2.84) tells us that

− pxkk − ϑk ∈ λk∂ϕ(x̄kk) for all k ∈ IN. (3.40)

Passing now to the limit as k →∞ in (3.39), (3.40), inclusion (2.55) for ξkk , and the second

condition in (2.84) with taking into account the robustness of the subdifferential in (3.40),
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we arrive at the relationships

−px(T )− ϑ ∈ λ∂ϕ
(
x̄(T )

)
, pu(T )− ϑ ∈ −2ū(T )N

(
‖ū(T )‖; [r − τ, r + τ ]

)
, pa(T ) = 0

with ϑ =
∑

i∈I(x̄(T )−ū(T )) ηi(T )x∗i ∈ N(x̄(T )− ū(T );C). This clearly verifies the transversality

conditions at the right endpoint in (3.9) supplemented by (3.11).

To justify the left endpoint transversality (3.10), we deduce from (2.82) and (2.83) for

j = 0 as well as the conditions on γk0 in Theorem 2.8 and the coderivative definition (2.48)

that

puk0 + hkλ
kwuk0 + 2ξk0 ū

k
0 − λk(vuk0 + θuk0 )

∈ D∗G
(
x̄k0 − ūk0,−

x̄k1 − x̄k0
hk

− f(x̄k0, ā
k
0)
)(
− pxk1 + λk(θxk0 + vxk0 )

)
,

pak0 = λk(vak0 + θak0 − hkλkwak0 − hk∇af(x̄k0, ā
k
0)∗
(
λk(θxk0 + vxk0 ) whenever k ∈ IN.

Now we can pass to the limit as k →∞ in these relationships by taking into account (2.55)

for j = 0, (2.39), the construction of qk(tkj ) = pkj , the convergence statements for wk0 , v
k
0 , θ

k
0

established above as well as robustness of the normal cone and coderivative. This readily

gives us (3.10).

Step 6: Measure nonatomicity conditions. To verify condition (a) therein without any re-

striction on τ ∈ [0, τ ], pick t ∈ [0, T ) with 〈x∗i , x̄(t) − ū(t)〉 < 0 for i = 1, . . . ,m and by

continuity of (x̄(·), ū(·)) find a neighborhood Vt of t such that 〈x∗i , x̄(s)− ū(s)〉 < 0 whenever

s ∈ Vt and i = 1, . . . ,m. This shows by the established convergence of the discrete optimal

solutions that 〈x∗i , x̄k(tkj ) − ūk(tkj )〉 < 0 if tkj ∈ Vt for i = 1, . . . ,m for all k ∈ IN sufficiently

large. Then it follows from (2.87) that γk(t) = 0 on any Borel subset V of Vt, and therefore

‖γk‖(V ) =
∫
V
d‖γk‖ =

∫
V
‖γk(t)‖dt = 0 by the construction of the measure γk in (3.29).



www.manaraa.com

61

Passing now to limit as k → ∞ and taking into account the measure convergence obtained

in Step 3, we arrive at ‖γ‖(V ) = 0 and thus justify the first measure nonatomicity condition.

The proof of the nonatomicity condition (b) for the measure ξ is similar provided the choice

of τ ∈ (0, τ).

Step 7: General nontriviality condition. Let us justify the nontriviality condition (3.13) for

any τ ∈ [0, τ ] under the assumptions made therein. Suppose on the contrary to (3.13) that

λ = 0, qx(0) = 0, qu(0) = 0, and p(T ) = 0, which yields λk → 0, qxk(0)→ 0, quk(0)→ 0, and

pk(T )→ 0 as k →∞.

Furthermore, we have by the construction of ξk(·) on [0, T ] in Step 3 the equalities∫ T

0

|ξk(t)|dt =
k−1∑
j=0

hk
|ξkj |
hk

=
k−1∑
j=0

|ξkj |.

Taking into account that I0

(
−pxkj+1 + λk(h−1

k θkxj + vxkj )
)
∪ I>

(
−pxkj+1 + λk(h−1

k θkxj + vxkj )
)
⊂

I(x̄kj − ūkj ) and that 〈x∗i , x̄kj − ūkj 〉 = 0 for all i ∈ I(x̄kj − ūkj ) and j = 0, . . . , k − 1, it follows

from (2.82) that

2ξkj 〈ūkj , x̄kj − ūkj 〉 = 〈pukj+1 − pukj − hkλkwukj , x̄kj − ūkj 〉, j = 0, . . . , k − 1. (3.41)

Using now the first condition in (3.12) imposed on the initial data of (P τ ) and that ‖ūkj‖ = r

for all j = jτ (k), . . . , k while r − τ − εk ≤ ‖ūkj‖ ≤ r + τ + εk for j = 0, . . . , jτ (k) − 1 and

small εk < τ , we get

|〈ūkj , x̄kj 〉| ≤ ‖ūkj‖ · ‖x̄kj‖ ≤ (r + 2τ)l < (r − 2τ)2 < r2 = ‖ūkj‖2,

which immediately implies the validity of the estimate

|〈ūkj , x̄kj − ūkj 〉| =
∣∣〈ūkj , x̄kj 〉 − ‖ūkj‖2

∣∣ > 0 (3.42)
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whenever k is sufficiently large. On the other hand, (3.42) follows directly from the alternative

assumption in (3.12) imposed on the optimal solution to (P τ ). Employing (3.42) and the

equalities in (3.38) gives us

2|ξkj | ≤
(∥∥pukj+1 − pukj

∥∥+ hkλ
k‖wukj ‖

) ∥∥x̄kj − ūkj∥∥
|〈ūkj , x̄kj − ūkj 〉|

, j = 0, . . . , k − 1. (3.43)

The obvious boundedness of

{ ∥∥x̄kj − ūkj∥∥
|〈ūkj , x̄kj − ūkj 〉|

}
allows us to assume without loss of generality

that

∥∥x̄kj − ūkj∥∥
|〈ūkj , x̄kj − ūkj 〉|

≤ 1 for j = 0, . . . , k − 1, and then we get from (3.43) that

2
k−1∑
j=0

|ξkj | ≤
k−1∑
j=0

‖pukj+1 − pukj ‖+ hkλ
k

k∑
j=0

‖wukj ‖ (3.44)

The second sum in (3.44) disappears as k →∞ due to the assumptions on `1; see (3.32) in

Step 4. To proceed with the first sum in (3.44), we have the estimates

k−1∑
j=0

‖pukj+1 − pukj ‖ ≤
k−1∑
j=1

‖pukj+1 − pukj ‖+ ‖puk1 ‖+ ‖puk0 ‖

≤λk
k−1∑
j=1

∥∥∥∥∥θukj − θukj−1

hk

∥∥∥∥∥+ λk
‖θuk0 ‖
hk

+ λk
k−1∑
j=1

‖vukj − vukj−1‖+ λk‖vuk0 ‖+ ‖puk0 ‖

≤2λk
k−1∑
j=1

∥∥∥∥∥ ūkj+1 − 2ūkj + ūkj−1

hk

∥∥∥∥∥+ 2λk
k−1∑
j=1

∥∥∥∥∥ ū(tkj+1)− 2ū(tkj ) + ū(tkj−1)

hk

∥∥∥∥∥
+λk
‖θuk0 ‖
hk

+ λk
k−1∑
j=1

‖vukj − vukj−1‖+ λk‖vuk0 ‖+ ‖puk0 ‖

≤4µ̃λk + λk
‖θuk0 ‖
hk

+ λk
k−1∑
j=1

‖vukj − vukj−1‖+ λk‖vuk0 ‖+ ‖puk0 ‖,

(3.45)

where µ̃ is defined in Theorem 2.8. The running cost structure (3.1) and differentiability of

`2 in u̇ yield

vukj = ∇u̇`2

(
tj,
ūkj+1 − ūkj

hk
,
ākj+1 − ākj

hk

)
for j = 0, . . . , k − 1.
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Then the third estimate in (3.2) ensures that

k−1∑
j=1

‖vukj − vukj−1‖ ≤
k−1∑
j=1

L

((
tj+1 − tj

)
+

∥∥∥∥ ūkj+1 − 2ūkj + ūkj−1

hk

∥∥∥∥) ≤ L(T + µ̃).

Deduce further from the definition of θuk in (2.61) the representation

θuk0

hk
=

2(ūk1 − ūk0)

hk
−

2
(
ū(hk)− ū(0)

)
hk

and observe that λk
‖θuk0 ‖
hk

→ 0 as k →∞ due to second estimate in (2.27) and the assumption

imposed on ū(·) in Theorem 2.8 via [10, Theorem 3.1]. We have furthermore that

‖vuk0 ‖ =

∥∥∥∥∇u̇`2

(
0,
ūk1 − ūk0
hk

,
āk1 − āk0
hk

)∥∥∥∥ ≤ L

∥∥∥∥ ūk1 − ūk0hk

∥∥∥∥ ≤ Lµ̃

due to (2.27) and the second estimate in (3.2). This shows therefore that

k−1∑
j=0

‖pukj+1 − pukj ‖ → 0 and

∫ T

0

|ξk(t)|dt→ 0 as k →∞ (3.46)

by (3.45) and (3.44), respectively. Appealing again to (2.82) gives us∫ T

0

∥∥∥∥∥
m∑
i=1

γki (t)x∗i

∥∥∥∥∥ dt =
k−1∑
j=0

∥∥∥∥∥hk
m∑
i=1

γkjix
∗
i

∥∥∥∥∥ ≤
k−1∑
j=0

‖pukj+1 − pukj ‖+ λkhk

k−1∑
j=0

‖wukj ‖

+ 2
k−1∑
j=0

|ξkj | → 0

(3.47)

as k →∞ by the relationships in (3.32) and (3.46).

We next show that qxk(hk) = pxk1 → 0 as k →∞. Indeed, it follows from (2.81) that∥∥qxk(hk)∥∥ ≤ ∥∥pxk0

∥∥+ λkhk
∥∥wxk0

∥∥+
∥∥χk0∥∥+ hk

∥∥∇xf(x̄k0, ā
k
0)∗(λk(θxk(0)− pxk1 ))

∥∥
+

∫ T

0

∥∥∥∥∥
m∑
i=1

γki (t)x∗i

∥∥∥∥∥ dt,
which verifies that limk→∞ q

xk(hk) = 0 due to (3.47) and the fact that the other quantities

in the right hand side of the above estimate converge to 0 as k →∞.

To get a contradiction with our assumption on the violation of (3.13), it remains by (3.30)
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to verify that ξkk → 0 as k →∞. To see this, observe that the convergence pk(T )→ 0, λk → 0

implies by the first condition in (2.53) that pxkk → 0, pukk → 0, and
∑m

i=1 η
k
kix
∗
i → 0 as k →∞.

Then it follows from the second condition in (2.53) that ξkk ū
k
k → 0, which yields ξkk → 0 since

ūkk 6= 0 for large k ∈ N due to ūkk → ū(T ) and the assumptions on either ū(T ) 6= 0 or τ < r

that exclude vanishing ūkk by the constraints in (2.9). Thus we arrive at a contradiction with

(3.30) and so justify the nontriviality condition (3.13).

Step 8: Enhanced nontriviality conditions. Our final step is to justify the stronger/enhanced

nontriviality conditions in (3.14), (3.15), and (3.16) under the interiority assumptions im-

posed therein provided that 0 < τ < r.

Consider first the left endpoint case (3.14) and suppose by contradiction that

(λ, qu(0), p(T )) = 0 under the assumption 〈x∗i , x0 − ū(0)〉 < 0 for i = 1, . . . ,m. It then

follows from (3.5) that 
ṗx(t) = ∇xf(x̄(t), ā(t))(−qx(t)),

ṗa(t) = ∇af(x̄(t), ā(t))(−qx(t)),
(3.48)

for a.e. t ∈ [0, T ]. Moreover, using (3.6) and (3.7) gives us pa(t) = qa(t) = 0 and thus

ṗa(t) = 0 for a.e. t ∈ [0, T ]. Hence, ∇af(x̄(t), ā(t))(−qx(t)) = 0 by (3.48), which justifies

that qx(t) = 0 for a.e. t ∈ [0, T ] due to the surjectivity of the Jacobian ∇af(x, a). It then

turns out from (3.48) that ṗx(t) = 0, and thus px(t) = px(T ) = 0 for all t ∈ [0, T ]. Using

(3.6) again yields qx(t) =

∫
[t,T ]

dγ(s) = 0 for almost all t ∈ [0, T ] except at most a countable

subset A. Consider the following possibilities:

• If 0 /∈ A then qx(0) = 0.

• If 0 ∈ A then using the measure nonatomicity condition gives us some number δ > 0
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such that

∫
[0,δ)

dγ(s) = 0, and thus qx(0) =

∫
[δ,T ]

dγ(s). We are left two following cases:

– If δ /∈ A then clearly qx(0) = 0.

– If δ ∈ A then there exists some δ̃ ∈ (0, δ) such that δ̃ /∈ A due to the countability

of A. On the other hand, [0, δ̃) is a Borel subset of V0 = [0, δ) so

qx(0) =

∫
[0,δ̃)

dγ(s) +

∫
[δ̃,T ]

dγ(s) = 0 +

∫
[δ̃,T ]

dγ(s) = 0.

In conclusion, we can always argue that qx(0) = 0 and hence we lead to the contradiction to

(3.13), which justifies the validity of (3.14).

We next consider the left endpoint case (3.15) and suppose by contradiction that

(λ, p(T )) = 0 under the validity of the interiority condition in (3.15). It follows from the

latter that 1− τ − εk < ‖ūk(0)‖ < 1 + τ + εk for i = 1, . . . ,m and k sufficiently large. Then

we deduce from (2.87) and (2.55) that γk0i = 0 and ξk0 = 0 for i = 1, . . . ,m. Combining with

(2.82) and the construction of quk(·) in Step 3 yields

quk(0) = puk0 = puk1 − hkλkwuk0 , k ∈ IN.

Since puk1 → 0 as k → ∞ by the above proof, we conclude that qu(0) = limk→∞ q
uk(0) = 0.

Using the same argument as the previous case we can argue that qx(0) = 0 and thus lead to

the contradiction to the nontriviality condition (3.13), which verifies (3.15).

The justification of (3.16) comes from the interior assumptions imposed in (3.16), (3.8),

and the transversality condition (3.9), and therefore we complete the proof of the theorem.

�

Let us now specify the general necessary optimality conditions of Theorem 3.2 to the



www.manaraa.com

66

important novel case of our consideration in this paper, where we have controls only in

perturbations while u-controls in (P τ ) are fixed. Such a setting is used in Section 5 for

applications to the controlled crowd motion model. In this case each problem (P ) reduces to

the following form (P̃ ):

minimize J̃ [x, a] := ϕ(x(T )) +

∫ T

0

`
(
t, x(t), a(t), ẋ(t), ȧ(t)

)
dt

subject to the sweeping differential inclusion

− ẋ(t) ∈ N
(
x(t)− ū(t);C

)
+ f
(
x(t), a(t)

)
a.e. t ∈ [0, T ], x(0) := x0 ∈ C (3.49)

with the convex polyhedron C in (1.7) and the implicit state constraints

〈
x∗i , x(t)− ū(t)

〉
≤ 0 for all t ∈ [0, T ] and i = 1, . . . ,m,

which follow from (3.49). As above, we study problem (P̃ ) in the class of (x(·), a(·)) ∈

W 1,2([0, T ];Rn+d). Observe that we do not need to consider in this case the τ -parametric

version of (P̃ ).

The next result follows from the specification of Theorem 3.2 and its proof in the case

of (P̃ ) by taking into account the structures of the sweeping set C(t) and the running cost

` therein.

Corollary 3.3 (necessary conditions for sweeping optimal solutions with con-

trolled perturbations). Let (x̄(·), ā(·)) be a given r.i.l.m. for (P̃ ) satisfying (H1), (H2),

all the appropriate assumptions of Theorem 2.8, and the assumptions on the running cost

` from Theorem 3.2 with `2 = 0. Then there exist a number λ ≥ 0, subgradient functions

w(·) = (wx(·), wa(·)) ∈ L2([0, T ];Rn+d) and v(·) = (vx(·), va(·)) ∈ L2([0, T ];Rn+d) well de-

fined at t = 0 and satisfying (3.3), an adjoint arc p(·) = (px(·), pa(·)) ∈ W 1,2([0, T ];Rn+d),
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and a measure γ = (γ1, . . . , γn) ∈ C∗([0, T ];Rn) on [0, T ] such that we have conditions (3.4),

(3.8) with the functions ηi ∈ L2([0, T ];R+) uniquely defined by representation (3.4) together

with the following relationships for a.e. t ∈ [0, T ]:
ṗx(t) = λwx(t) +∇xf

(
x̄(t), ā(t)

)∗(
λvx(t)− qx(t)

)
,

ṗa(t) = λwa(t) +∇af
(
x̄(t), ā(t)

)∗(
λvx(t)− qx(t)

)
,

(3.50)

where the vector function q = (qx, qa) : [0, T ] → Rn × Rd is of bounded variation on [0, T ]

satisfying

qa(t) ∈ λ∂`3

(
t, ˙̄a(t)

)
for a.e. t ∈ [0, T ] and (3.51)

q(t) := p(t)−
∫

[t,T ]

(
dγ(s), 0

)
on [0, T ] (3.52)

except at most a countable subset for its left-continuous representative. We also have the

measure nonatomicity condition (a) of Theorem 3.2 and the transversality relationships
−px(T ) ∈ λ∂ϕ

(
x̄(T )

)
+

∑
i∈I(x̄(T )−ū(T ))

ηi(T )x∗i ⊂ ∂ϕ
(
x̄(T )

)
+N

(
(x̄(T )− ū(T );C

)
,

pa(T ) = 0, and qa(0) = λva(0).

(3.53)

Finally, the enhanced nontriviality condition

λ+ ‖p(T )‖ 6= 0 (3.54)

holds provided that either 〈x̄(t), ū(t)〉 6= ‖ū(t)‖2 on [0, T ), or 〈x∗i , x0 − ū(0)〉 < 0 for all

i = 1, . . . ,m and the Jacobian ∇af(x, a) is surjective.

Remark 3.4 (discussions on optimality conditions). The results of Theorem 3.2 and

Corollary 3.3 provide comprehensive necessary optimality conditions for a broad class of

intermediate (between weak and strong with including the latter) local minimizers of state-
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constrained sweeping control problems concerning highly unbounded and non-Lipschitzian

differential inclusions. Now we briefly discuss some remarkable features of the obtained results

with their relationships to known results in this direction.

(i) As has been well recognized in standard optimal control theory for differential equations

and Lipschitzian differential inclusions with state constraints, necessary optimality conditions

for such problems may exhibit the degeneration phenomenon when they hold for every feasible

solution with some nontrivial collection of dual variables. In particular, this could happen if

the initial vector at t = 0 belongs to the boundary of state constraints; see [4, 52] for more

discussions and references.

It may also be the case for our problem (P τ ) under the general nontriviality condition

(3.13) when, e.g., τ = 0 and the vector x0 − ū(0) lays on the boundary of the polyhedral

set C. However, the degeneration phenomenon is surely excluded in (P τ ) by the enhanced

nontriviality in (3.14), (3.15), (3.16), and by the condition 〈x̄(t), ū(t)〉 6= ‖ū(t)‖2 on [0, T )

in (P̃ ) even in the case where either x0 − ū(0) or x̄(T ) − ū(T ) is a boundary point of the

convex polyhedron C; see Examples 4.2, 4.3 and also Examples 5.1, 5.2 for the crowd motion

model. As other examples demonstrate (see, in particular, Example 4.1), even in the case

of potential degeneracy as in (3.13) for τ = 0 under the violation of the aforementioned

conditions that rule out the degeneration phenomenon, the obtained results can be useful to

determine optimal solutions.

(ii) Let us draw the reader’s attention to some specific features of the new transversality

conditions obtained in Theorem 3.2 and Corollary 3.3. The transversality condition at the

left endpoint in (3.10) and (3.53) may look surprising at the first glance since the initial
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vector x0 of the feasible sweeping trajectories x(·) is fixed. However, it is not the case for

control functions u(·) and a(·), which are incorporated into the differential inclusion (2.7)

and the cost functional (1.5) with their initial points being reflected in (3.10). The usage

of the left transversality condition (3.10) allows us to exclude in Example 4.1 the potential

degeneration term qu(0) from the general nontriviality condition (3.13) and then to calculate

an optimal solution to the sweeping control problem under consideration.

Observe that we get the two types of the transversality conditions for p(T ) at the right

endpoint in (3.9) and (3.53): one expressed directly via ηi(T ) and other given via the nor-

mal cone N(x̄(T )− ū(T );C) due to (3.11). While the second type of transversality is more

expected, the first type is essentially more precise. Indeed, the normal cone transversality

may potentially lead us to degeneration when x̄(T ) − ū(T ) lays at the boundary of C. On

the other hand, degeneration is completely excluded in this case if we have ηi(T ) = 0 as

i ∈ I(x̄(T ) − ū(T )) for the endpoint vectors ηi(T ), which may occur independently of their

a priori location at N(x̄(T ) − ū(T );C) due to the fact that the vectors ηi(T ) are uniquely

determined by representation (3.4) of the term − ˙̄x(T ) − f(x̄(t), ā(t)) via the linearly inde-

pendent generating vectors x∗i . This is explicitly illustrated by Example 4.1.

(iii) It has been largely understood in optimal control of differential equations and Lip-

schitzian differential inclusions that necessary optimality conditions for problems with in-

equality state constraints are described via nonnegative Borel measures. In the case of (P τ )

we have both inequality and equality state constraints on z(·) given by (2.9) and (1.8) that

are reflected in Theorem 3.2 by the measure ξ ∈ C∗([0, T ];R) and γ ∈ C∗([0, T ];Rm), respec-

tively. In problem (P̃ ) we do not have state constraints for the u-components, and so only
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the measure γ appears in the optimality conditions of Corollary 3.3. But even in the latter

case we do not ensure the nonnegativity of γ (see Examples 5.1 and 5.2 for the controlled

crowd motion model), which once more reveals a significant difference between the sweeping

control problems governed in fact by evolution/differential variational inequalities from the

conventional state-constrained control problem considered in the literature. On the other

hand, all the examples presented in Sections 4 and 5 show that our results agree with those

known for conventional models while indicating that the corresponding measures become

nonzero at the points where optimal trajectories hit the boundaries of state constraints and

stay such on these boundaries; see Examples 5.1 and 5.2 to illustrate the latter phenomenon.

(iv) Finally, we compare the results derived in Theorem 3.2 (and their consequences in Corol-

lary 3.3) with the most recent necessary optimality conditions obtained in [13, Theorem 6.1]

for problem (P̄ τ ) as 0 < τ < T of minimizing the cost functional

J̄ [x, u, b] := ϕ
(
x(T )

)
+

∫ T

0

`
(
t, x(t), u(t), b(t), ẋ(t), u̇(t), ḃ(t)

)
dt

over absolutely continuous controls u = (u1, . . . , um) : [0, T ] → Rmn, b = (b1, . . . , bm) : [0, T ]

→ Rm and the corresponding absolutely continuous trajectories x : [0, T ] → Rn of the un-

perturbed sweeping inclusion

−ẋ(t) ∈ N
(
x(t);C(t)

)
for a.e. t ∈ [0, T ], x(0) := x0 ∈ C(0),

with the sweeping set C(t) and the constraints on u-controls given by

C(t) :=
{
x ∈ Rn

∣∣ 〈ui(t), x〉 ≤ bi(t) for all i = 1, . . . ,m
}
,

‖ui(t)‖ = 1 for all t ∈ [0, T ] and i = 1, . . . ,m.
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We can see that problem (P̄ τ ) is different from (P τ ) by the absence of controlled perturbations

(which is of course the underlying feature of our problem (P τ ) and its applications to the

crowd motion model), the choice of τ , and a bit different class of feasible solutions. On the

other hand, while ignoring these differences, problem (P τ ) can be reduced to (P̄ τ ) with no

u-controls (they are replaced by the generating vectors x∗i of the polyhedron C) and with

b-controls given in the form

bi(t) :=
〈
x∗i , u(t)

〉
for all t ∈ [0, T ] and i = 1, . . . ,m

via the u-controls in (P τ ). However, problem (P̄ τ ) obtained in this way from (P τ ) in the

absence of perturbations is not considered in [13], since we do have the pointwise constraints

on ui(t) in (2.9), which are in fact a part of the state constraints on z(t) in the setting

of (2.7) under investigation, while there are no any constraints on bi(t) in [13]. Necessary

optimality conditions for problems (P̄ τ ) of this type (where τ does not play any role since the

u-controls are fixed) are specified in [13, Theorem 6.3]. It is not hard to check that the results

obtained therein are included in those established in Theorem 3.2 for (P τ ) in the case where

both problems are the same. However, even in this (not so broad) case we obtain additional

information in Theorem 3.2 and Corollary 3.3 in comparison with [13]. Let us list the main

new ingredients of our results for (P τ ) in the common setting with [13, Theorem 6.3] and also

in a similar (while different) setting of [13, Theorem 6.1] for (P̄ τ ) with u-control components,

which can be incorporated therein by using themore precise discrete approximation technique

developed in this paper:

• The new transversality conditions at the left endpoint; see remark (ii) above.

• Both types of transversality at the right endpoint discussed in remark (ii) are different
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and more convenient for applications in comparison with (6.10)–(6.12) in [13]. Observe that

the latter ones are given implicitly as equations for px, pu, pb at the local optimal solution

z̄(T ).

• Our results are applied to the general case of the parameter τ and its interrelation

with another parameter r in the u-control bounds in contrast to only the interior case of

τ ∈ (0, T ) with r = 1 in [13].

• Our general nontriviality condition (3.13) contains only the u-component qu(0) and

x-component qx(0) in contrast to all the components of q(0) in the corresponding condition

λ+ ‖p(T )‖+ ‖q(0)‖ 6= 0 of [13].

• Theorem 3.2 and Corollary 3.3 present more conditions that surely rule out the degen-

eracy phenomenon in comparison with the corresponding results of [13, Theorems 6.1, 6.3];

see the discussion in remark (i). Note that the appearance of degeneracy is also excluded by

the new transversality conditions as discussed in remark (ii) and illustrated by the examples

below.

• The presence of controlled perturbations in (P τ ) and (P̃ ) allows us to reveal new be-

havior phenomena for the measure γ responsible for the state constraints (1.8) in comparison

with the settings of [13], even in the absence of the measure ξ responsible for the u-constraints

in (2.9); see remark (iii). In particular, Examples 5.1 and 5.2 illustrate behavior of the mea-

sure γ in keeping the optimal trajectory on the boundary of state constraints in the crowd

motion model.
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CHAPTER 4 NUMERICAL EXAMPLES

In this section we present three academic examples illustrating some characteristic fea-

tures of the obtained necessary optimality conditions for problems (P τ ) and (P̃ ) and their

usefulness to determine optimal solutions and exclude nonoptimal ones in rather simple set-

tings. More involved examples with our major applications to the crowd motion model in a

corridor are given in Section 5.

Example 4.1 (optimal controls in both sweeping set and perturbations). Consider

problem (P τ ) with any 0 ≤ τ < 1/2 and the following data:
n = m = d = T = 1, x0 := 0, x∗1 := 1, f(x, a) := a, ϕ(x) :=

(x− 1)2

2
,

`(t, x, u, a, ẋ, u̇, ȧ) :=
1

2
a2.

(4.1)

0
Figure 1: Direction of optimal control

1

In this case we have C = R−. The structure of the cost functional in (4.1) allows us

to assume without loss of generality that a-controls are uniformly bounded, and thus (P τ )

admits an optimal solution (x̄(·), ū(·), ā(·)) ∈ W 1,2([0, 1];R3) by [10, Theorem 4.1]. It is also

easy to see that all the assumptions of Theorem 3.2 are satisfied. Furthermore, it follows

from the structure of (P τ ) with r = 1/2 in (2.9) that ū(t) = 1/2 on [τ, 1 − τ ] and ū(t) ∈

[1/2−τ, 1/2+τ ] on [0, τ)∪(1−τ, 1]; see Figure 1. Supposing further that x̄(t) ∈ int(C+ ū(t))

for any t ∈ [0, 1) and that − ˙̄x(1) = f(x̄(1), ā(1)), we see that these assumptions are realized

for the optimal solution found via the necessary optimality conditions of Theorem 3.2.

With taking into account that the second assumption in (3.12) holds in our case, we get

from Theorem 3.2 the following relationships, where λ ≥ 0 and η(·) ∈ L2([0, 1];R+) being
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well defined at t = 1:

(1) w(t) =
(
0, 0, ā(t)

)
, v(t) = 0 for a.e. t ∈ [0, 1];

(2) x̄(t) < ū(t) =⇒ η(t) = 0 for a.e. t ∈ [0, 1);

(3) η(t) > 0 =⇒ qx(t) = 0 for a.e. t ∈ [0, 1] including t = 1;

(4) − ˙̄x(t) = η(t) + f
(
x̄(t), ā(t)

)
= η(t) + ā(t) for a.e. t ∈ [0, 1] including t = 1;

(5)
(
ṗx(t), ṗu(t), ṗa(t)

)
=
(
0, 0, λā(t)− qx(t)

)
for a.e. t ∈ [0, 1];

(6) qu(t) = 0, qa(t) = 0 for a.e. t ∈ [0, 1];

(7)
(
qx(t), qu(t), qa(t)

)
=
(
px(t), pu(t), pa(t)

)
−
(∫

[t,1]

dγ,

∫
[t,1]

2dξ − dγ, 0
)

for a.e. t ∈

[0, 1];

(8) −px(1) = λ
(
x̄(1)− 1

)
+ η(1), pa(1) = 0;

(9) pu(1) ∈ η(1) + 2ū(1)N
(
ū(1); [1/2− τ, 1/2 + τ ]

)
;

(10) η(1) ∈ N
(
x̄(1)− ū(1);C

)
;

(11) qu(0) ∈ −2ū(0)N
(
ū(0); [1/2− τ, 1/2 + τ ]

)
+D∗G

(
x0− ū(0),− ˙̄x(0)− ā(0)

)(
− qx(0)

)
;

(12) λ+ |qu(0)|+ |p(1)| 6= 0.

Since x̄(t)− ū(t) ∈ intC for all t ∈ [0, 1), the coderivative of the mapping G(·) = N(·;C)

disappears in the left endpoint transversality condition (11). Furthermore, we have η(1) = 0

by (3) due to the assumption − ˙̄x(1) = f(x̄(1), ā(1)) imposed on the optimal solution. Hence
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condition (10) holds automatically, and we arrive at the updated transversality relationships:
−px(1) = λ

(
x̄(1)− 1

)
, pu(1) ∈ 2ū(1)N

(
ū(1); [1/2− τ, 1/2 + τ ]

)
,

qu(0) ∈ −2ū(0)N
(
ū(0); [1/2− τ, 1/2 + τ ]

)
.

(4.2)

It follows from (5)–(7) that px(·) is a constant function on [0, 1] and that

λā(t) = qx(t) = px(1)−
∫

[t,1]

dγ for a.e. t ∈ [0, 1]. (4.3)

The next assertion that holds in any finite-dimensional space is a consequence of the

measure nonatomicity condition (a) of Theorem 3.2, which is essential in this and other

examples.

Claim: Let 〈x∗, x̄(s)−ū(s)〉 < 0 for all s ∈ [t1, t2] with t1, t2 ∈ [0, T ) and some vector x∗ ∈ Rn

under the validity of the measure nonatomicity condition (a) of Theorem 3.2 involving the

vector x∗ and the measure γ therein. Then γ([t1, t2]) = 0 and γ({s}) = 0 whenever s ∈ [t1, t2].

Thus we also have γ((t1, t2)) = γ([t1, t2)) = γ((t1, t2]) = 0.

To verify this claim, pick any s ∈ [t1, t2] with 〈x∗1, x̄(t)−ū(t)〉 < 0 and find by the imposed

measure nonatomicity condition a neighborhood Vs of s in [0, T ] such that γ(V ) = 0 for all

Borel subsets V of Vs, and hence obviously γ({s}) = 0. Since [t1, t2] ⊂
⋃
s∈[t1,t2] Vs and [t1, t2]

is compact, there are finitely many points s1, . . . , sp ∈ [t1, t2] with [t1, t2] ⊂
⋃p
i=1 Vsi . For each

i = 1, . . . , p−1 take s̃i ∈ Vsi∩Vsi+1
such that [si, s̃i] ⊂ Vsi and [s̃i, si+1] ⊂ Vsi+1

, where s1 = t1

and sp = t2 without loss of generality. Then the claim readily follows from the equalities

γ([t1, t2]) = γ

(
p−1⋃
i=1

[si, s̃i) ∪ [s̃i, si+1)

)
=

p−1∑
i=1

(
γ([si, s̃i)) + γ([s̃i, si+1))

)
= 0.
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Going back to our example, observe that the validity of x̄(s) < ū(s) for all s ∈ [t, 1) with

t ∈ [0, 1) yields γ([t, 1]) = γ({1}). Indeed, it follows from the above claim that for all large

k ∈ IN we get

γ([t, 1]) = γ([t, 1)) + γ({1}) = γ
( [
t, 1− k−1

]
∪
⋃
n≥k

(
1− n−1, 1− (n+ 1)−1

])
+ γ({1})

= γ
([
t, 1− k−1

])
+
∑
n≥k

γ
((

1− n−1, 1− (n+ 1)−1
])

+ γ({1}) = γ({1}).

This allows us to deduce from (4.3) that

λā(t) = px(1)− γ({1}) for a.e. t ∈ [0, 1]. (4.4)

To proceed further, consider first the case where 1/2− τ < ū(t) < 1/2 + τ for t = 0, 1. In

this case we have qu(0) = pu(1) = 0 by (4.2) and so λ > 0, since the opposite would contradict

the nontriviality condition (12) by taking (8) with η(1) = 0 into account. It follows now from

(4.4) that ā(·) must be a constant function, ā(·) ≡ ϑ on [0, 1], due to its continuity. Then (2)

and (4) ensure that

x̄(t) = x0 +

∫ t

0

˙̄x(s)ds = −
∫ t

0

ϑds = −tϑ for all t ∈ [0, 1].

Consequently, the cost functional in our problem is calculated by

J [x̄, ū, ā] =
(−ϑ− 1)2

2
+
ϑ2

2
= ϑ2 + ϑ+

1

2

and clearly achieves its absolute minimum at ϑ = −1/2. Thus in this case we arrive by the

necessary optimality conditions of Theorem 3.2 at the (local) optimal solution
x̄(t) = t/2, ā(t) = −1/2 on [0, 1], ū(t) = 1/2 on [τ, 1− τ ], and

ū(t) ∈ (1/2− τ, 1/2 + τ) on [0, τ) ∪ (1− τ, 1],
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which satisfies all the preliminary assumptions imposed above.

In the case where ū(t) ∈ {1/2− τ, 1/2 + τ} as t = 0, 1 we get from (4.2) that

pu(1) ≤ 0, qu(0) ≥ 0 if ū(0) = 1/2− τ, ū(1) = 1/2− τ,

pu(1) ≥ 0, qu(0) ≥ 0 if ū(0) = 1/2− τ, ū(1) = 1/2 + τ,

pu(1) ≤ 0, qu(0) ≤ 0 if ū(0) = 1 + τ, ū(1) = 1− τ,

pu(1) ≥ 0, qu(0) ≤ 0 if ū(0) = 1/2 + τ, ū(1) = 1/2 + τ,

which does not provide sufficient information to conclude that pu(1) = qu(0) = 0 and thus

λ > 0. If the latter holds, we can proceed similarly to the interior case and find local minimiz-

ers as above. However, the case of λ = 0 remains open from the viewpoint of Theorem 3.2.

Observe finally that by fixing the u-control component as ū(·) = 1/2 on [0, 1] we reduce

problem (P τ ) of this example to the type of (P̃ ). Then the necessary conditions of Corol-

lary 3.3 and the arguments above allow us to calculate, by taking into account the existence

result of [10, Theorem 4.1], the unique global optimal solution (x̄(t), ā(t)) = (t/2,−1/2) for

all t ∈ [0, 1].

Example 4.2 (nonsmooth problems with controlled perturbations). Consider prob-

lem (P̃ ) with n,m, d, T, x0, x
∗
1, f(x, a) as in (4.1), fixed ū(t) = r on [0, 1], and the cost func-

tions ϕ(x) := (x− 1)2,

`(t, x, u, a, ẋ, u̇, ȧ) := (a+ 2t)2 + α|ȧ+ 4t− 1| for α ≥ 0. (4.5)

Let us first examine the case of the parameters r = 1 and α = 0. The structure of the cost

functional in this case suggests a natural candidate for the optimal solution (x̄(t), ā(t)) =

(t2,−2t) on [0, 1]. Observe that x̄(t) < ū(t) for all t ∈ [0, 1) and that x̄(t) · ū(t) 6= |ū(t)|2 for
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all t ∈ [0, 1). Applying now the necessary optimality conditions of Corollary 3.3 gives us the

following relationships with a number λ ≥ 0 and a function η(·) ∈ L2([0, 1];R+) well defined

at t = 1:

(1) w(t) =
(
0, 2(ā(t) + 2t)

)
, v(t) = (0, 0) for a.e. t ∈ [0, 1];

(2) x̄(t) < ū(t) =⇒ η(t) = 0 for a.e. t ∈ [0, 1] including t = 1;

(3) η(t) > 0 =⇒ qx(t) = 0 for a.e. t ∈ [0, 1];

(4) − ˙̄x(t) = η(t) + f
(
x̄(t), ā(t)

)
= η(t) + ā(t) for a.e. t ∈ [0, 1];

(5)
(
ṗx(t), ṗa(t)

)
=
(
0, 2λ(ā(t) + 2t)− qx(t)

)
for a.e. t ∈ [0, 1];

(6) qa(t) = 0 for a.e. t ∈ [0, 1];

(7)
(
qx(t), qa(t)

)
=
(
px(t), pa(t)

)
−
(∫

[t,1]

dγ, 0

)
for a.e. t ∈ [0, 1];

(8) −px(1) ∈ 2λ
(
x̄(1)− 1

)
+ η(1), pa(1) = 0;

(9) η(1) ∈ N
(
x̄(1)− ū(1);C

)
;

(10) λ+ |px(1)| 6= 0.

Combining the relationships in (5)–(7) gives us the equation

2λ
(
ā(t) + 2t

)
= qx(t) = px(1)− γ([t, 1]) for a.e. t ∈ [0, 1]. (4.6)

Letting λ > 0 and taking into account that x(t) − u(t) < 0 for all t ∈ [0, 1), we get by

the arguments in Example 4.1 that γ([t, 1]) = γ({1}). It implies that ā(t) + 2t reduces to

a constant ϑ a.e. on [0, 1], which ensures that ā(t) = −2t + ϑ for all t ∈ [0, 1] due to the

continuity of ā(·). It follows from (4) that

x̄(t) =

∫ t

0

˙̄x(s)ds = −
∫ t

0

η(s)ds−
∫ t

0

(−2s+ ϑ)ds = t2 − tϑ, t ∈ [0, 1].
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Thus x̄(1) = 1 − ϑ, which gives the value of 2ϑ2 to the cost functional with the minimal

value achieved at ϑ = 0. This confirms via Corollary 3.3 the optimality of the solution

(x̄(t), ā(t)) = (t2,−2t) for the above choice of the parameters (r, α) = (1, 0) in the problem

under consideration. Note that the other conditions in (1)–(10) besides those used above

hold automatically for (x̄(·), ā(·)) with px(1) = η(1) = 0.

Consider now this problem (P̃ ) with the parameter values r = 2 and α > 0; the latter gen-

erates nonsmoothness in (4.5). Let us check that the feasible solution (x̄(t), ā(t)) = (t2,−2t)

on [0, 1] is not locally optimal anymore for (P̃ ) by using the necessary optimality conditions

of Corollary 3.3 listed above with the replacement of (6) by the subdifferential inclusion

(3.51) in the nonsmooth case of (4.5). It follows from (7) that qa(t) = pa(t) for a.e. t ∈ [0, 1].

Furthermore, (3.51) tells us in this case that qa(t) = −αλ for a.e. 0 ≤ t < 3/4 and qa(t) = αλ

for a.e. 3/4 < t ≤ 1. Thus we have

pa(t) =


−αλ for all 0 ≤ t < 3/4,

αλ for all 3/4 < t ≤ 1,

which yields by the continuity of pa(·) on [0, 1] that αλ = 0 and hence λ = 0. Then it

follows from (8) and (2) with x̄(1) = 1 < ū(1) = 2 in that px(1) = 0. This contradicts the

nontriviality condition (10) and hence justifies that the given pair (x̄(·), ā(·)) fails to be an

optimal solution to (P̃ ) with r = 2 and α > 0.

The the next example addresses a two-dimensional perturbed sweeping process and

demonstrates the possibility to determine optimal solutions by using the necessary opti-

mality conditions of Corollary 3.3.

Example 4.3 (two-dimensional sweeping process with controlled perturbations.)



www.manaraa.com

80

Consider problem (P̃ ) with the following initial data:

n = m = d = 2, T = 1, x0 := (0,−1), x∗1 := (1, 0), x∗2 := (0, 1), f(x, a) := a, ϕ(x) := 0,

and `(t, x, u, a, ẋ, u̇, ȧ) := (‖ẋ‖2+‖a‖2)/2. Given ū(·) = (1, 0) on [0, 1], apply the necessary op-

timality conditions of Corollary 3.3 to determine (local) optimal solutions ā(·) = (ā1(·), ā2(·))

and x̄(·) = (x̄1(·), x̄2(·)) to this problem. We seek for solutions to (P̃ ) such that

〈x∗i , x̄(t)− ū(t)〉 < 0 for all t ∈ [0, 1), i = 1, 2, and x̄(1)− ū(1) ∈ bdC. (4.7)

and show that (4.7) holds for (x̄(·), ā(·)) found below by using the necessary optimality

conditions of Corollary 3.3. In the case of (P̃ ) under consideration these conditions look as

follows, where λ ≥ 0 and η(·) =
(
η1(·, η2(·)

)
∈ L2([0, 1];R+) well defined at t = 1:

(1) w(t) =
(
0, 0, ā(t)

)
, v(t) =

(
˙̄x(t), 0, 0

)
for a.e. t ∈ [0, 1];

(2) 〈x∗i , x̄(t)− ū(t)〉 < 0 =⇒ ηi(t) = 0 for i = 1, 2 and a.e. t ∈ [0, 1);

(3) ηi(t) =⇒ 〈x∗i , λ ˙̄x(t)− qx(t)〉 = 0 for i = 1, 2 and a.e. t ∈ [0, 1];

(4) − ˙̄x(t) =
(
− ˙̄x1(t),− ˙̄x2(t)

)
= (η1(t), η2(t)) +

(
ā1(t), ā2(t)

)
for a.e. t ∈ [0, 1];

(5)
(
ṗx(t), ṗa(t)

)
= λ

(
0, ā(t)

)
+
(
0, (λ ˙̄x1(t)− qx2 (t), λ ˙̄x2(t)− qx2 (t))

)
for a.e. t ∈ [0, 1];

(6) qa(t) = 0 for a.e. t ∈ [0, 1];

(7) qx(t) = px(t)− γ([t, 1]), qa(t) = pa(t) for a.e. t ∈ [0, 1];

(8) −px(1) =
(
η1(1), η2(1)

)
∈ N

(
x̄(1)− ū(1);C

)
;

(9) λ+ ‖px(1)‖ 6= 0.

Employing the first condition in (4.7) together with (2) and (4), we obtain that ˙̄x(t) =
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−ā(t) for a.e. t ∈ [0, 1]. It also follows from (5)–(7) that

λā(t) = λ ˙̄x(t)− qx(t), i.e., 2λā(t) = −qx(t) for a.e. t ∈ [0, 1] (4.8)

Using (5) again tells us that px(·) is constant on [0, 1], i.e., px(t) ≡ px(1). This allows us to

deduce that

qx(t) = px(1)− γ([t, 1]) = px(1)− γ({1}) for a.e. t ∈ [0, 1]

by using the measure nonatomicity condition (a) from Theorem 3.2 for the measure γ and

repeating the arguments of Example 4.1. This shows by (4.8) and the control continuity that

ā(·) is a constant on [0, 1] provided that λ 6= 0; otherwise, we do not have enough information

to proceed. Putting ā(t) ≡ (ϑ1, ϑ2) for all t ∈ [0, 1] gives us x̄(t) = (−ϑ1t,−1 − ϑ2t) for all

t ∈ [0, 1]. Thus x̄(1) = (−ϑ1,−1 − ϑ2), and by the second condition in (4.7) we have the

following two possibilities:

(a): x̄1(1) = 1. Then ϑ1 = −1 and the cost functional reduces is J [x̄, ā] = 1 + ϑ2
2. It

obviously achieves its absolute minimum value J̄ = 1 at the point ϑ2 = 0.

(b): x̄2(1) = 0. Then ϑ2 = −1, and the minimum cost is J̄ = 1 achieved at ϑ1 = 0.

As a result, we arrive at are two feasible solutions giving the same optimal value to the

cost functionals:

x̄(t) = (t,−1), ā(t) = (−1, 0) and x̄(t) = (0, t− 1), ā(t) = (0,−1).

Figure 2 provides some illustration of the sweeping motion in this case, where the red lines

indicate the boundary points at which the corresponding sweeping trajectories hit the state

constraints.



www.manaraa.com

82

x0 = (0,−1)

(0,0)

(1,-1)

Figure 2: Two-dimensional motion.
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CHAPTER 5 CONTROLLED CROWD MOTION

MODEL IN A CORRIDOR

This section is devoted to the formulation and solution of an optimal control problem

concerning the so-called crowd motion model in a corridor. We refer the reader to [29,30,51]

for describing of the dynamics in such and related crowd motion models as a sweeping

process with the corresponding mathematical theory, numerical simulations, and various

applications. However, neither these papers nor other publications contain, to the best of

our knowledge, control and/or optimization versions of crowd motion modeling, which is of

our main interest here. We follow the terminology and notation of [29, 30,51].

Our main goal is to demonstrate that the necessary optimality conditions obtained in

Corollary 3.3 allow us to develop an effective procedure to determine optimal solutions in the

general setting under consideration with finitely many participants and then explicitly solve

the problem in some particular situations involving two and three participants. Furthermore,

in this way we reveal certain specific features of the obtained necessary optimality conditions

for problems with state constraints.

The crowd motion model of [29,30,51] is designed to deal with local interactions between

participants in order to describe the dynamics of pedestrian traffic. This model rests on the

following postulates:

• A spontaneous velocity corresponding to the velocity that each participant would like

to have in the absence of others is defined first.

• The actual velocity is then calculated as the projection of the spontaneous velocity onto

the set of admissible velocities, i.e., such velocities that do not violate certain nonoverlapping
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constraints.

In what follows we consider n participants (n ≥ 2) identified with rigid disks of the same

radius R in a corridor as depicted in Figure 3.

x1 x2
... xi xi+1

... xN

Figure 3: Crowd motion model in a corridor
Exit

In that case, since the participants are not likely to leap across each other, it is natural to

restrict the set of feasible configurations to one of its connected components (nonoverlapping

condition):

Q0 =
{
x = (x1, . . . , xn) ∈ Rn, xi+1 − xi ≥ 2R

}
. (5.1)

Assuming that the participants exhibit the same behavior, their spontaneous velocity can be

written as

U(x) =
(
U0(x1), . . . , U0(xn)

)
for x ∈ Q0,

where Q0 is taken from (5.1). Observe that the nonoverlapping constraint in (5.1) does not

allow the participants to move with their spontaneous velocity, and the distance between

two participants in contact can only increase. To reflect this situation, the set of feasible

velocities

Cx :=
{
v = (v1, . . . , vn) ∈ Rn | xi+1 − xi = 2R =⇒ vi+1 ≥ vi for all i = 1, . . . , n− 1

}
,

and then describe the actual velocity field is the feasible field via the Euclidean projection

of U(x) to Cx:

ẋ(t) = Π
(
U(x);Cx

)
for a.e. t ∈ [0, T ], x(0) = x0 ∈ Q0,
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where T > 0 is a fixed duration of the process and x0 indicates the starting position of

the participants. Using the orthogonal decomposition via the sum of mutually polar cone as

in [30,51], we get

U(x) ∈ Nx + ẋ(t) for a.e. t ∈ [0, T ], x(0) = x0,

where Nx stands for the normal cone to Q0 at x and can be described in this case as the

polar

Nx = C∗x :=
{
w ∈ Rn | 〈w, v〉 ≤ 0 for all v ∈ Cx

}
, x ∈ Q0.

Let us now rewrite this model in the form used in our problem (P̃ ) without control

parameters so far. Given the orths (e1, . . . , en) ∈ Rn, specify the polyhedral set C by

C :=
{
x ∈ Rn | 〈x∗i , x〉 ≤ 0, i = 1, . . . , n−1

}
with x∗i := ei−ei+1, i = 1, . . . , n−1. (5.2)

Since all the participants exhibit the same behavior and want to reach the exit by the shortest

path, their spontaneous velocities can be represented as

U(x) =
(
U0(x1), . . . , U0(xn)

)
with U0(x) = −s∇D(x),

where D(x) stands for the distance between the position x = (x1, . . . , xn) ∈ Q0 and the exit,

and where the scalar s ≥ 0 denotes the speed. Since x 6= 0 and hence ‖∇D(x)‖ = 1, we

have s = ‖U0(x)‖. By taking this into account as well as the aforementioned postulate that,

in the absence of other participants, each participant tends to remain his/her spontaneous

velocity until reaching the exit, the (uncontrolled) perturbations in this model are described
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by

f(x) = −(s1, . . . , sn) ∈ Rn for all x = (x1, . . . , xn) ∈ Q0,

where si denotes the speed of the participant i = 1, . . . , n. However, if participant i is in

contact with participant i+ 1 in the sense that xi+1(t)−xi(t) = 2R, then both of them tend

to adjust their velocities in order to keep the distance at least 2R with the participant in

contact. To control the actual speed of all the participants in the presence of the nonover-

lapping condition (5.1), we suggest to involve control functions a(·) = (a1(·), . . . , an(·)) into

perturbations as follows:

f
(
x(t), a(t)

)
=
(
s1a1(t), . . . , snan(t)

)
, t ∈ [0, T ]. (5.3)

In order to represent this controlled crowd motion model in the form of (P̃ ), define recurrently

the vector function ū = (ū1, . . . , ūn) : [0, T ]→ Rn, which is constant in our case, by

ūi+1(t)− ūi(t) = 2R with ū1(t) = α and ‖ū(t)‖ = r, i = 1, . . . , n− 1, (5.4)

where r = r(α) is an increasing function of α with the value of α specified later. Note that

the nonoverlapping condition (5.1) can be written now, due to (5.2) and (5.4), via the state

constraints

x(t)− ū(t) ∈ C for all t ∈ [0, T ], (5.5)

where the points t ∈ [0, T ] with xi+1(t)− xi(t) = 2R are exactly those at which the motion
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x(t)− ū(t) hits the polyhedral constraint set C.

The constructions above allow us to present the controlled crowd motion dynamics as
−ẋ(t) ∈ N

(
x(t);C(t)

)
+ f
(
x(t), a(t)

)
for a.e. t ∈ [0, T ],

C(t) := C + ū(t), ‖ū(t)‖ = r on [0, T ], x(0) = x0 ∈ C(0),

(5.6)

with C, f , and ū taken from (5.2), (5.3), and (5.4), respectively. Recall that the state con-

straints (5.5) are implicitly present in (5.6) due to definition (1.2) of the normal cone to

convex sets.

To optimize dynamics (5.6) by using controls a(·), we introduce the cost functional

minimize J [x, a] :=
1

2

(
‖x(T )‖2 +

∫ T

0

‖a(t)‖2dt
)

(5.7)

the meaning of which is to minimize the distance of all the participants to the exit at the

origin together with the energy of feasible controls a(·). Having now the formulated optimal

control problem for the crowd motion model in the form of (P̃ ), we can apply to solving

this problem the necessary optimality conditions for the sweeping process with controlled

perturbations derived in Corollary 3.3.

It is easy to see that all the assumptions of Corollary 3.3 are satisfied for problem (5.6),

(5.7). To make sure that the nontriviality condition holds in the enhanced/nondegenerate

form (3.54), we select the parameter α in (5.4) so large that

r = r(α) > l = ‖x0‖+ e2MT2MT
(
1 + ‖x0‖

)
where the number l > 0 is calculated in (2.3) for the constant control u(·). As mentioned

in (3.12) of Theorem 3.2, this condition with τ = 0 yields the validity of the second con-

dition therein, which ensures in turn the fulfillment of the enhanced nontriviality (3.54) in



www.manaraa.com

88

Corollary 3.3.

Applying now the necessary optimality conditions of Corollary 3.3 gives us the following,

where λ ≥ 0 and ηi(·) ∈ L2([0, T ];R+) well defined at t = T :

(1) w(t) =
(
0, ā(t)

)
, v(t) = (0, 0) for a.e. t ∈ [0, T ];

(2) − ˙̄x(t) =
n−1∑
i=1

ηi(t)x
∗
i + (s1ā1(t), . . . , snān(t)) for a.e. t ∈ [0, T ];

(3) x̄i+1(t)− x̄i(t) > 2R =⇒ ηi(t) = 0 for all i = 1, . . . , n− 1 and a.e. t ∈ [0, T ];

(4) ηi(t) > 0 =⇒ qxi (t) = qxi+1(t) for all i = 1, . . . , n− 1 and a.e. t ∈ [0, T ];

(5) ṗ(t) =
(
0, λā(t)− (s1q

x
1 (t), . . . , snq

x
n(t))

)
for a.e. t ∈ [0, T ];

(6) qx(t) = px(t)− γ([t, T ]) for a.e. t ∈ [0, T ];

(7) qa(t) = pa(t) = 0 for a.e. t ∈ [0, T ];

(8) −px(T ) = λx̄(T ) +
∑

i∈I(x̄(T )−ū(T )) ηi(T );

(9)
∑

i∈I(x̄(T )−ū(T )) ηi(T ) ∈ N
(
x̄(T )− ū(T );C);

(10) pa(T ) = 0;

(11) λ+ ‖qx(0)‖+ ‖px(T )‖ 6= 0.

As discussed above, the situation where x̄i+1(t1)− x̄i(t1) = 2R for some t1 ∈ [0, T ] pushes

participants i and i+ 1 to adjust their speeds in order to keep the distance at least 2R with

the one in contact. It is natural to suppose that both participants i and i+ 1 maintain their

new constant velocities after the time t = t1 until either reaching someone ahead or the

end of the process at time t = T . Hence the velocities of all the participants are piecewise
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constant on [0, T ] in this setting.

Observe that the differential relation in (2) can be read as
− ˙̄x1(t) = η1(t) + s1ā1(t),

− ˙̄xi(t) = ηi(t)− ηi−1(t) + siāi(t), i = 2, . . . , n− 1,

− ˙̄xn(t) = −ηn−1(t) + snān(t)

(5.8)

for a.e. t ∈ [0, T ]. Next we clarify the sense of the implications in (3). If participant 1 is far

away from participant 2 in the sense that x̄2(t) − x̄1(t) > 2R for some time t ∈ [0, T ], then

his/her actual velocity and the spontaneous velocity are the same meaning that − ˙̄x1(t) =

s1ā1(t). Likewise we have the same situation for the last participant n. However, it is not the

case for two adjacent participants between the first and last ones because they must rely on

the participants ahead and behind them.

Further, it follows from conditions (5) and (7) that

λāi(t) = siq
x
i (t) for a.e. t ∈ [0, T ] and all i = 1, . . . , n. (5.9)

If ηi(t) > 0 for some i ∈ {1, . . . , n−1} and t ∈ [0, T ], we deduce from (4) and (5.9) by taking

into account the continuity of āi(·) on [0, T ] that

si+1āi(t) = siāi+1(t) for all t ∈ [0, T ] and i = 1, . . . , n− 1 (5.10)

provided that λ > 0 (say λ = 1); otherwise, we do not have enough information to proceed.

Since the velocities si are constant in (5.11), it is to suppose by (5.10) that the functions āi(·)

are constant āi on [0, T ] for all i = 1, . . . , n and thus optimal controls among such functions.

Using this and the Newton-Leibniz formula in (5.8) gives us the trajectory representations
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for all t ∈ [0, T ]:

x̄1(t) = x01 −
∫ t

0

η1(s)ds− ts1ā1,

x̄i(t) = x0i +

∫ t

0

[
ηi−1(s)− ηi(s)

]
ds− tsiāi for i = 2, . . . , n− 1,

xn(t) = x0n +

∫ t

0

ηn−1(s)ds− tsnān,

(5.11)

where (x01, . . . , x0n) are the components of the starting point x0 ∈ Rn in (5.6).

Prior to developing an effective procedure to find optimal solutions to the controlled

crowd motion model by using the obtained optimality conditions in the general case above,

we consider the following example for two participants that shows how to explicitly solve the

problem in such settings.

Example 5.1 (solving the crowd motion control problem with two participants).

Specify the data of (5.6), (5.7) as follows: n = 2, T = 6, s1 = 6, s2 = 3, x01 = −60, x02 =

−48, R = 3. Then the equations in (5.11) reduce for all t ∈ [0, 6] to

x̄1(t) = −60−
∫ t

0

η(s)ds− 6tā1, x̄2(t) = −48 +

∫ t

0

η(s)ds− 3tā2. (5.12)

Let t1 ∈ [0, 6] be the first time when x̄2(t1)− x̄1(t1) = 2R = 6; see Figure 4.

x1 x2

Figure 4: Two participants out of contact for t < t1.
Exit

Hence for t < t1 we have x2(t) − x1(t) > 2R = 6, and so η(t) = 0 by (3). Note that at

the point t = t1 the motion x̄(t) − ū(t) hits the state constraint set C in (5.5) and thus is

reflected by a nonzero measure γ in (6). However, we can proceed by an easier way in our

particular setting. Indeed, subtracting the first equation in (5.12) from the second one gives
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us the relationship

12− 3t1(ā2 − 2ā1) = 6 and thus 6ā1 − 3ā2 + 1 ≤ 0. (5.13)

Suppose without loss of generality that both functions η(t) and ˙̄x(t1) are well defined at

t = t1. Then we get from (5.8) and (5.12) in this case the expressions

˙̄x1(t1) = −η(t1)− 6ā1 and ˙̄x2(t1) = η(t1)− 3ā2

with ˙̄x1(t1) ≤ ˙̄x2(t1), which imply in turn that

− 2η(t1)− 6ā1 + 3ā2 ≤ 0. (5.14)

It follows from (5.13) and (5.14) that η(t1) ≥ 1/2. Furthermore, we deduce from (5.10) with

the chosen speed values s1, s2 that the constant controls ā1, ā2 are related by

ā1 =
s1

s2

ā2 = 2ā2.

Having in hand the relationships above, let us now calculate an optimal solution to the

problem under consideration by imposing the requirement that both participants maintain

their new constant velocities until the end of the process at t = T , i.e., satisfying the

condition ˙̄x(t) = ˙̄x(t1) for all t ∈ [t1, 6]. Since ā(·) is constant on [0, 6] and ˙̄x(·) is constant on

the intervals [0, t1) and [t1, 6], the vector function η(·) is constant on [0, t1) and [t1, 6] while

admitting by (5.11) the representation

η(t) =


η(0) a.e. t ∈ [0, t1) including t = 0,

η(t1) a.e. t ∈ [t1, 6] including t = t1.

In particular, η(t) = η(t1) > 0 a.e. on [t1, 6], and thus we get from (3) that x̄2(t) − x̄1(t) =

2R = 6 for all t ∈ [t1, 6], i.e., the optimal motion stays on the boundary of state constraints
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(5.5) on the whole interval [t1, 6] meaning that the two participants of the model are in

contact on this interval; see Figure 5.

x1 x2

Figure 5: Two participants in contact for t ≥ t1.
Exit

Combining this with the the subtraction of the first equation from the second one in

(5.12) gives us

(t− t1)
[
2η(t1) + 6ā1 − 3ā2

]
= 0 for all t ∈ [t1, 6],

which in turn implies that 2η(t1) + 6ā1− 3ā2 = 0. Remembering that ā1 = 2ā2, we calculate

the value of η(·) at the hitting point t = t1 by η(t1) = −9
2
ā2 = −9

4
ā1. Note also that

˙̄x2(t1) = ˙̄x1(t1) in our case. Based on these calculations, we can express the value of cost

functional (5.7) for this example at (x̄, ā) as

J [x̄, ā] =
1

2

[(
45ā2 + 57

)2
+
(
45ā2 + 51

)2
]

+ 15ā2
2.

Minimizing this function of ā2 subject to the constraint ā2 ≤ −1
9
that comes from the second

expression in (5.13) gives us the optimal control value ā2 = −4860
4080
≈ −1.1911. Accordingly

the formulas obtained above allows us to calculate all the other ingredients of the optimal

solution with the corresponding values of dual variables in the necessary optimality condition.

It gives us, in particular, that

γ
(
[t, 6]

)
≈ (−1.56, 3.76) for 0.56 = t1 ≤ t ≤ 6,

which reflects the fact that the optimal sweeping motion hits the boundary of the state

constraints at t1 = 0.56 and stays there till the end of the process at T = 6. It is worth
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mentioning that the obtained nonzero measure γ has the opposite signs of its components

on [t1, 6], which is different from the standard optimal control problems with inequality state

constraints.

Now we come back to the general case of the controlled crowd model in a corridor with

n ≥ 3 participants. Following the approach employed in Example 5.1, we develop an effective

procedure to determine an optimal control from the obtained necessary optimality conditions

and then fully implement by a numerical example for the case where n = 3.

Recall our postulate that any two adjacent participants i and i + 1 that come to be in

contact at some point t ∈ [0, T ] (i.e., xi+1(t) − xi(t) = 2R) have the same velocity therein,

change their velocities at the contact point, and maintain their new constant velocities until

reaching the participant ahead or until the end of the process at t = T . This yields that the

function η(·) in the conditions above is piecewise constant on [0, T ]. Suppose for simplicity

that η0(t) = ηn(t) = 0 on [0, T ] and then rewrite (5.11) as

x̄i(t) = x0i +

∫ t

0

[
ηi−1(s)− ηi(s)

]
ds− tsiāi for i = 1, . . . , n.

Fix i ∈ {1, . . . , n− 1}, and let ti be the first time when x̄i+1(ti)− x̄i(ti) = 2R; see Figure 6.

x1 x2 x3

Figure 6: Out of contact situation for two adjacent participants when t < t1

Exit

For each such index i consider the numbers

ϑi := min
{
tj
∣∣ tj > ti, j = 1, . . . , n− 1

}
, ϑi := max

{
tj
∣∣ tj < ti, j = 1, . . . , n− 1

}
(5.15)

and observe the following relationships for the optimal crowd motion on the intervals [0, ti)
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and ∈ [ti, ϑ
i):

• If t ∈ [0, ti), we have ηi(·) = 0 on this interval by (3). This gives us

x̄i(t) = x0i+

∫ t

0

ηi−1(s)ds− tsiāi, x̄i+1(t) = x0(i+1)−
∫ t

0

ηi+1(s)ds− tsi+1āi+1 for t ∈ [0, ti).

• If t ∈ [ti, ϑ
i) with ϑi from (5.15), we have on this interval that

x̄i(t) = x0i +

∫ ti

0

ηi−1(s)ds+ (t− ti)
[
ηi−1(ti)− ηi(ti)

]
− tsiāi,

xi+1(t) = x0(i+1) −
∫ ti

0

ηi+1(s)ds+ (t− ti)
[
ηi(ti)− ηi+1(ti)

]
− tsi+1āi+1.

In what follows we suppose without loss of generality that the functions ˙̄x(·) are well defined

at ti while the functions η(·) are well defined at ti and ϑi. Since at the contact time t = ti

the distance between the two participants i and i + 1 is exactly 2R (see Figure 7), we have

the following relationships:

x1 x2 x3

Figure 7 All the participants in contact for t ≥ t1

Exit

2R = x̄i+1(ti)− x̄i(ti) = x0,(i+1) − x0i −
∫ ti

0

[
ηi+1(s) + ηi−1(s)

]
ds− ti

(
si+1āi+1 − siāi

)
= x0(i+1) − xi0 −

∫ ϑi

0

[
ηi+1(s) + ηi−1(s)

]
ds− (ti − ϑi)

[
ηi+1(ϑi) + ηi−1(ϑi)

]
− ti(si+1āi+1 − siai),

where ϑi is defined in (5.15) being dependent of ti. Then we can find ti ≤ T from the equation

ti =

x0(i+1) − x0i − 2R + ϑi
[
ηi+1(ϑi) + ηi−1(ϑi)

]
−
∫ ϑi

0

[
ηi+1(s) + ηi−1(s)

]
ds

ηi+1(ϑi) + ηi−1(ϑi) + si+1āi+1 − siāi
(5.16)

provided that x0(i+1) − x0i > 2R. In the case where x0(i+1) − x0i = 2R we put ti = 0. Our
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postulate tells us that ˙̄xi+1(ti) = ˙̄xi(ti), which implies therefore that

2ηi(ti) = ηi+1(ti) + ηi−1(ti) + si+1āi+1 − siāi. (5.17)

If ηi(ti) > 0, we get from the above that (5.10) holds, while the remaining case where

ηi(ti) = 0 can be treated via (5.17). The cost functional (5.7) can be expressed in this way as

a function of (ā1, . . . , ān) and ηi(tj) for i = 0, . . . , n and j = 1, . . . , n− 1. Consequently the

optimal control problem under consideration reduces to the finite-dimensional optimization

of this cost subject to equality (5.16) and (5.17) constraints. To furnish these operations

step-by-step, we proceed as follows:

Step 1: Determine which participants are in contact at the initial time, i.e., for which

i ∈ {1, . . . , n} we have x0(i+1) − x0i = 2R. If this occurs only for i = n, there is nothing to

do. If it is the case of some i ∈ {0, . . . , n− 1}, we put ti := 0 and observe that participants

i and i+ 1 have the same velocities while being away by 2R from each other.

Step 2: If x0(i+1) − x0i = 2R for all i = 0, . . . , n− 1, express ti as a function of āi and ηi by

solving equation (5.16) for ti with ϑi taken from in (5.15).

Step 3: Find relations between ηi and āi from (5.10) and (5.17), respectively, and substitute

them into the cost function (5.7) for the subsequent optimization with respect to āi.

We now demonstrate how this procedure works in the case where n = 3 in the crowd

motion model.

Example 5.2 (solving the crowd motion control problem with three participants).

Consider the optimal control problem in (5.6), (5.7) with the following initial data:

n = 3, s1 = 6, s2 = 3, s3 = 2, x01 = −60, x02 = −48, x03 = −42, T = 6, R = 3.
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By using the procedure outlined above, we first get x02−x01 = 12 > 6 = 2R and x03−x02 =

6 = 2R. Then it is obvious that t2 = 0, t1 is determined by (5.16) as

t1 =
6

η2(0) + 3ā2 − 6ā1

≤ 6,

and thus ϑ1 = t2 = 0. It is easy to see that in this example we have

˙̄x1(t) = −6ā1, ˙̄x2(t) = −η2(0)− 3ā2, ˙̄x3(t) = η2(0)− 2ā3,

x̄1(t) = −60− 6ā1, x̄2(t) = −48− tη2(0)− 3tā2, x̄3(t) = −42 + tη2(0)− 2tā3

for 0 ≤ t < t1, while for t ∈ [t1, 6] the corresponding formulas are:

˙̄x1(t) = −η1(t1)− 6ā1, ˙̄x2(t) = −η2(t1) + η1(t1)− 3ā2, ˙̄x3(t) = η2(t1)− 2ā3,
x̄1(t) = −60− (t− t1)η1(t1)− 6tā1, x̄2(t) = −48− tη2(0) + (t− t1)

(
η1(t1)− η2(t1)

)
− 3tā2,

x̄3(t) = −42 + tη2(0) + (t− t1)η2(t1)− 2tā3.

It follows directly from (5.17) the following relationships for η(·):

2η1(t1) = η2(t1) + 3ā2 − 6ā1, 2η2(0) = 2ā3 − 3ā2, 2η2(t1) = η1(t1) + 2ā3 − 3ā2.

Denoting for convenience x := a2, y := a3, z := a1 and taking into account that ā1 = 2ā2

by (5.10) due to η1(t1) > 0, we rewrite these expressions and the above formula for t1 as

t1 =
6

−(21/2)x+ y
, η1(t1) = −8x+ (13/6)y, η2(0) = −(3/2)x+ y, η2(t1) = −3x+ (4/3)y.

(5.18)

Let us split the situation into the following two cases:
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Case 1: η2(0) > 0. In this case we have x = 3
2
y, and thus (5.18) gives us the calculations:

t1 = −(24/59y) ≤ 6, η1(t1) = −(59/6)y, η2(0) = −(5/4)y, η2(t1) = −(37/6)y.

As a result, we have the expressions for the terminal points of the optimal trajectories

x̄1(6) = −49y − 56, x̄2(6) = −49y − 50, x̄3(6) = −49y − 44

and the corresponding representation of the cost function

J =
1

2

[
(49y + 56)2 + (49y + 50)2 + (49y + 44)2

]
+ 36.75y2.

Minimizing this quadratic function over the constraint y ≤ − 4
59

lead us to the optimal

point y = − 7350
7276.5

≈ −1.01 and the corresponding values of the optimal control ā(t) =

(−3.03,−1.52,−1.01), which creates the optimal contact time t1 = 0.40 and the optimal

crowd motion dynamics

(
x̄1(t), x̄2(t), x̄3(t)

)
=


(18.18t− 60, 3.28t− 48, 3.28t− 42) for t ∈ [0, t1),

(8.25t− 56, 8.25t− 50, 8.25t− 44) for t ∈ [t1, 6].

Note also that γ([t, 6]) = (−2.92, 4.71, 1.24) when t ∈ [t1, 6] with λ = 1 as considered above.

Case 2: η2(0) = 0. Then we can deduce from (5.18) that

t1 = −y−1 ≤ 6, η1(t1) = −(19/6)y, η2(t1) = −(2/3)y, η2(0) = −(3/2)x+ y = 0.

Hence η2(t1) > 0, which implies by (5.10) that 2ā2 = 3ā3 and so x = 3
2
y. Combining the

latter with the above relation x = 2
3
y tells us that x = y = 0 This contradicts the constraint

y < 0 and thus rules out the situation in case. Overall, the calculations in Case 1 completely

solve the crowd motion optimal control problem in this example by using the optimality

conditions established in Corollary 3.3.
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CHAPTER 6 CONCLUDING REMARKS AND FU-

TURE DIRECTIONS

In the future, we would like to continue our research on the following issues.

• Optimal Control of a Perturbed Sweeping Process and Applications Cur-

rently, optimality conditions for the optimal control problems associated with perturbed

sweeping process have been derived successfully (see our paper [10]). Nevertheless, the

structure of the moving set C(t) = C + u(t) in (2.6), as a translation of the convex

polyhedral set, considered in the sweeping process problem is somehow restrictive. It

may cause the restriction of the applications to the crowd motion models in the sense

that: we just considered only the case when n individuals move in a corridor. Following

the work of J. Venel in [51], in order to fit higher dimensional motions, we will consider

a more general form of the moving set C(t), possibly

C(t) := {x ∈ H | gi(t, x) ≥ 0, for i = 1, ...,m},

where gi are convex functions. We then try to derive necessary optimality conditions

for local minimizers of the new controlled sweeping process with the set C(t) specified

above using the method of discrete approximations. Actually, optimality conditions

have been obtained successfully for discrete optimal solutions entirely via the initial

data of the perturbed sweeping process under consideration in our ongoing research.

A challenging issue remains on deriving necessary optimality conditions for local solu-

tions to continuous-time sweeping control problems of this class by passing to the limit

from those obtained for their finite-difference counterparts. Besides their own theo-

retical interest, explicit necessary optimality conditions for continuous-time sweeping
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systems may be convenient for calculating optimal solutions. We pursue these goals in

both theory and applications, particularly to the crowd motion model in a more gen-

eral setting and to a well-known game (the labyrinth table-top game) in our on-going

research.

• Optimal Control of differential inclusions under some weaker assumptions

than Lipschitz continuity imposed on the velocity set F . We will consider the

generalized Bolza problem governed by differential inclusions

ẋ(t) ∈ F (x(t), t) a.e t ∈ [a, b] with x(a) = x0,

where the set-valued mapping F satisfies some weaker condition than Lipschitzian

property, e.g., one-sided Lipschitzian (OSL), relaxed one-sided Lipschitzian (ROSL),

modified one-sided Lipschitzian (MOSL) (see [19, 38] for more discussions and ref-

erences therein), subject to some endpoint constraints. In fact, the velocity set

F (x(t), x) = −N(x(t);C(t)) in the sweeping process which is not Lipschitzian actually

satifies the OSL condition. Due to the non-Lipschitzian property of F , the classical

discrete approximation approach cannot be applied and does require serious modifica-

tions. Even in the particular case of a sweeping process, although the limiting procedure

to derive optimality conditions has been obtained sucessfully, the procedure is still very

complicated and it is not clear whether we can succeed in more general situations. In

the paper [38], Mordukhovich and Tian can derive necessary optimality conditions

for the discretized Bolza problems via suitable generalized differential constructions of

variational analysis when the velocity set F satisfies ROSL condition. The obtained

results on the well-posedness of discrete approximations and necessary optimality con-
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ditions allow us to justify a numerical approach to solve the generalized Bolza problem

for OSL differential inclusions by using discrete approximations constructed via the

implicit Euler scheme. However, to obtain optimal conditions for the original problem

is still not clear and has not been done yet. It seems to us that the condition like OSL

may be not adequate in order to achieve our goal and it should be modified in some

way. To proceed, we may go back to the sweeping process problem to analyze what

could be missing in the general problems. This will be a part of our future research.
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In P. Drabek, P. Krečí and P. Takac, editors, Nonlinear Differential Equations, Res.

Notes Math. 404, pages 47–110. Chapman & Hall, CRC, 1999.

[25] M. Kunze, M. D. P. Monteiro Marques. An introduction to Moreau’s sweeping process.

In B. Brogliato, editor, Impacts in Mechanical Systems, Lecture Notes in Phys. 551,

pages 1–60. Springer, 2000.

[26] P. D. Loewen. Optimal Control via Nonsmooth Analysis. CRM Proceedings and Lecture

Notes, Vol. 2 American Mathematical Society, Providence, RI, 1993.

[27] P. D. Loewen, R. T. Rockafellar. Optimal control of unbounded differential inclusions,

SIAM J. Control Optim. 34 (1994), 442-470.



www.manaraa.com

104

[28] Markus Kunze, D. P. Manuel, Monteiro Marques. An Introduction to Moreau’s Sweeping

Process.

[29] B. Maury, J. Venel. A mathematical framework for a crowd motion model. C. R. Acad.

Sci. Paris Ser. I, 346:1245–1250, 2008.

[30] B. Maury, J. Venel. Handling of contacts in crowd motion simulations, Traffic and

Granular Flow ’07, Springer (2009) 171-180.

[31] B. Maury, J. Venel. A discrete contact model for crowd motion, ESAIM: M2AN 45

(2011) no. 1, 145-168.

[32] A. Mielke. Evolution of rate-independent systems. Evolutionary equations. Vol. II. In

C. M. Dafermos and E. Feireis, editors, Handbook of Differential Equations. Elsevier,

2005.

[33] B. S. Mordukhovich. On variational analysis of differential inclusions, in Optimization

and Nonlinear Analysis (A. Ioffe, M. Marcus, and S. Reich, eds.), Pitman Res. Notes

Math. Series 244, Longman, Harlow, Essex, (1992), 199-214.

[34] B. S. Mordukhovich. Sensitivity analysis in nonsmooth optimization, in Theoretical

Aspects of Industrial Design, edited by D. A. Field and V. Komkov, SIAM Proc. Appl.

Math., 58 (1992), 32-46, Philadelphia, Pennsylvania.

[35] B. S. Mordukhovich. Discrete approximations and refined Euler-Lagrange conditions for

differential inclusions. SIAM J. Control Optim., 33:882–915, 1995.

[36] B. S. Mordukhovich. Variational Analysis and Generalized Differentiation, I: Basic The-

ory. Springer-Verlag, Berlin (2006).



www.manaraa.com

105

[37] B. S. Mordukhovich. Variational Analysis and Generalized Differentiation, II: Applica-

tions. Springer-Verlag, Berlin (2006).

[38] B. S. Mordukhovich, Y. Tian. Implicit Euler approximation and optimization of one-

sided Lipschitzian differential inclusions, to appear in Nonlinear Analysis and Optimiza-

tion, Contemporary Mathematics Series, AMS, 2015, http://arxiv.org/abs/1410.2207.

[39] M. D. P. Monteiro Marques. Differential Inclusions in Nonsmooth Mechanical Problems:

Shocks and Dry Friction, Birkhäuser, Boston, 1993.
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ABSTRACT

OPTIMAL CONTROL OF A PERTURBED SWEEPING PROCESS WITH

APPLICATIONS TO THE CROWD MOTION MODEL

by

TAN HOANG CAO

August 2016

Advisor: Dr. Boris. S. Mordukhovich

Major: Mathematics (Applied)

Degree: Doctor of Philosophy

The dissertation is devoted to the study and applications of a new class of optimal control

problems governed by a perturbed sweeping process of the hysteresis type with control func-

tions acting in both play-and-stop operator and additive perturbations. Such control prob-

lems can be reduced to optimization of discontinuous and unbounded differential inclusions

with pointwise state constraints, which are immensely challenging in control theory and pre-

vent employing conventional variation techniques to derive necessary optimality conditions.

We develop the method of discrete approximations married with appropriate generalized dif-

ferential tools of modern variational analysis to overcome principal difficulties in passing to

the limit from optimality conditions for finite-difference systems. This approach leads us to

nondegenerate necessary conditions for local minimizers of the controlled sweeping process

expressed entirely via the problem data. Besides illustrative examples, we apply the obtained
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results to an optimal control problem associated with of the crowd motion model of traffic

flow in a corridor, which is formulated in this thesis. The derived optimality conditions allow

us to develop an effective procedure to solve this problem in a general setting and completely

calculate optimal solutions in particular situations.
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